@article{10_1090_jams_874,
author = {Yamaki, Kazuhiko},
title = {Non-density of small points on divisors on {Abelian} varieties and the {Bogomolov} conjecture},
journal = {Journal of the American Mathematical Society},
pages = {1133--1163},
year = {2017},
volume = {30},
number = {4},
doi = {10.1090/jams/874},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/874/}
}
TY - JOUR AU - Yamaki, Kazuhiko TI - Non-density of small points on divisors on Abelian varieties and the Bogomolov conjecture JO - Journal of the American Mathematical Society PY - 2017 SP - 1133 EP - 1163 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/874/ DO - 10.1090/jams/874 ID - 10_1090_jams_874 ER -
%0 Journal Article %A Yamaki, Kazuhiko %T Non-density of small points on divisors on Abelian varieties and the Bogomolov conjecture %J Journal of the American Mathematical Society %D 2017 %P 1133-1163 %V 30 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1090/jams/874/ %R 10.1090/jams/874 %F 10_1090_jams_874
Yamaki, Kazuhiko. Non-density of small points on divisors on Abelian varieties and the Bogomolov conjecture. Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1133-1163. doi: 10.1090/jams/874
[1] Points of finite order on an abelian variety Izv. Akad. Nauk SSSR Ser. Mat. 1980
[2] Zhang’s conjecture and the effective Bogomolov conjecture over function fields Invent. Math. 2011 517 562
[3] The geometric Bogomolov conjecture for curves of small genus Experiment. Math. 2009 347 367
[4] Intersection theory 1998
[5] Local and canonical heights of subvarieties Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2003 711 760
[6] The Bogomolov conjecture for totally degenerate abelian varieties Invent. Math. 2007 377 400
[7] Equidistribution over function fields Manuscripta Math. 2008 485 510
[8] Théorèmes de Bertini et applications 1983
[9] Abelian varieties 1983
[10] Fundamentals of Diophantine geometry 1983
[11] Commutative ring theory 1986
[12] Bogomolov conjecture for curves of genus 2 over function fields J. Math. Kyoto Univ. 1996 687 695
[13] Bogomolov conjecture over function fields for stable curves with only irreducible fibers Compositio Math. 1997 125 140
[14] Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves J. Amer. Math. Soc. 1998 569 600
[15] Arithmetic height functions over finitely generated fields Invent. Math. 2000 101 142
[16] Abelian varieties 1970
[17] , , Geometric invariant theory 1994
[18] , On 𝜓-invariant subvarieties of semiabelian varieties and the Manin-Mumford conjecture J. Algebraic Geom. 2004 771 798
[19] Faisceaux amples sur les schémas en groupes et les espaces homogènes 1970
[20] Courbes sur une variété abélienne et points de torsion Invent. Math. 1983 207 233
[21] Sous-variétés d’une variété abélienne et points de torsion 1983 327 352
[22] , Critères de platitude et de projectivité. Techniques de “platification” d’un module Invent. Math. 1971 1 89
[23] Diophantine geometry from model theory Bull. Symbolic Logic 2001 37 57
[24] A positive characteristic Manin-Mumford theorem Compos. Math. 2005 1351 1364
[25] Positivité et discrétion des points algébriques des courbes Ann. of Math. (2) 1998 167 179
[26] Geometric Bogomolov’s conjecture for curves of genus 3 over function fields J. Math. Kyoto Univ. 2002 57 81
[27] Effective calculation of the geometric height and the Bogomolov conjecture for hyperelliptic curves over function fields J. Math. Kyoto Univ. 2008 401 443
[28] Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: the minimal dimension of a canonical measure) Manuscripta Math. 2013 273 306
[29] Strict supports of canonical measures and applications to the geometric Bogomolov conjecture Compos. Math. 2016 997 1040
[30] Admissible pairing on a curve Invent. Math. 1993 171 193
[31] Equidistribution of small points on abelian varieties Ann. of Math. (2) 1998 159 165
[32] Gross-Schoen cycles and dualising sheaves Invent. Math. 2010 1 73
Cité par Sources :