Non-density of small points on divisors on Abelian varieties and the Bogomolov conjecture
Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1133-1163 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

The Bogomolov conjecture for a curve claims finiteness of algebraic points on the curve which are small with respect to the canonical height. Ullmo has proved that this conjecture holds over number fields, and Moriwaki generalized it to the assertion over finitely generated fields over $\mathbb {Q}$ with respect to arithmetic heights. As for the case of function fields with respect to the geometric heights, Cinkir has proved the conjecture over function fields of characteristic $0$ and of transcendence degree $1$. However, the conjecture has been open over other function fields. In this paper, we prove that the Bogomolov conjecture for curves holds over any function field. In fact, we show that any non-special closed subvariety of dimension $1$ in an abelian variety over function fields has only a finite number of small points. This result is a consequence of the investigation of non-density of small points of closed subvarieties of abelian varieties of codimension $1$. As a by-product, we show that the geometric Bogomolov conjecture, which is a generalization of the Bogomolov conjecture for curves over function fields, holds for any abelian variety of dimension at most $3$. Combining this result with our previous works, we see that the geometric Bogomolov conjecture holds for all abelian varieties for which the difference between its nowhere degeneracy rank and the dimension of its trace is not greater than $3$.
DOI : 10.1090/jams/874

Yamaki, Kazuhiko 1

1 Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, 606-8501, Japan
@article{10_1090_jams_874,
     author = {Yamaki, Kazuhiko},
     title = {Non-density of small points on divisors on {Abelian} varieties and the {Bogomolov} conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {1133--1163},
     year = {2017},
     volume = {30},
     number = {4},
     doi = {10.1090/jams/874},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/874/}
}
TY  - JOUR
AU  - Yamaki, Kazuhiko
TI  - Non-density of small points on divisors on Abelian varieties and the Bogomolov conjecture
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 1133
EP  - 1163
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/874/
DO  - 10.1090/jams/874
ID  - 10_1090_jams_874
ER  - 
%0 Journal Article
%A Yamaki, Kazuhiko
%T Non-density of small points on divisors on Abelian varieties and the Bogomolov conjecture
%J Journal of the American Mathematical Society
%D 2017
%P 1133-1163
%V 30
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/874/
%R 10.1090/jams/874
%F 10_1090_jams_874
Yamaki, Kazuhiko. Non-density of small points on divisors on Abelian varieties and the Bogomolov conjecture. Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1133-1163. doi: 10.1090/jams/874

[1] Bogomolov, F. A. Points of finite order on an abelian variety Izv. Akad. Nauk SSSR Ser. Mat. 1980

[2] Cinkir, Zubeyir Zhang’s conjecture and the effective Bogomolov conjecture over function fields Invent. Math. 2011 517 562

[3] Faber, X. W. C. The geometric Bogomolov conjecture for curves of small genus Experiment. Math. 2009 347 367

[4] Fulton, William Intersection theory 1998

[5] Gubler, Walter Local and canonical heights of subvarieties Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2003 711 760

[6] Gubler, Walter The Bogomolov conjecture for totally degenerate abelian varieties Invent. Math. 2007 377 400

[7] Gubler, Walter Equidistribution over function fields Manuscripta Math. 2008 485 510

[8] Jouanolou, Jean-Pierre Théorèmes de Bertini et applications 1983

[9] Lang, Serge Abelian varieties 1983

[10] Lang, Serge Fundamentals of Diophantine geometry 1983

[11] Matsumura, Hideyuki Commutative ring theory 1986

[12] Moriwaki, Atsushi Bogomolov conjecture for curves of genus 2 over function fields J. Math. Kyoto Univ. 1996 687 695

[13] Moriwaki, Atsushi Bogomolov conjecture over function fields for stable curves with only irreducible fibers Compositio Math. 1997 125 140

[14] Moriwaki, Atsushi Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves J. Amer. Math. Soc. 1998 569 600

[15] Moriwaki, Atsushi Arithmetic height functions over finitely generated fields Invent. Math. 2000 101 142

[16] Mumford, David Abelian varieties 1970

[17] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[18] Pink, Richard, Roessler, Damian On 𝜓-invariant subvarieties of semiabelian varieties and the Manin-Mumford conjecture J. Algebraic Geom. 2004 771 798

[19] Raynaud, Michel Faisceaux amples sur les schémas en groupes et les espaces homogènes 1970

[20] Raynaud, M. Courbes sur une variété abélienne et points de torsion Invent. Math. 1983 207 233

[21] Raynaud, M. Sous-variétés d’une variété abélienne et points de torsion 1983 327 352

[22] Raynaud, Michel, Gruson, Laurent Critères de platitude et de projectivité. Techniques de “platification” d’un module Invent. Math. 1971 1 89

[23] Scanlon, Thomas Diophantine geometry from model theory Bull. Symbolic Logic 2001 37 57

[24] Scanlon, Thomas A positive characteristic Manin-Mumford theorem Compos. Math. 2005 1351 1364

[25] Ullmo, Emmanuel Positivité et discrétion des points algébriques des courbes Ann. of Math. (2) 1998 167 179

[26] Yamaki, Kazuhiko Geometric Bogomolov’s conjecture for curves of genus 3 over function fields J. Math. Kyoto Univ. 2002 57 81

[27] Yamaki, Kazuhiko Effective calculation of the geometric height and the Bogomolov conjecture for hyperelliptic curves over function fields J. Math. Kyoto Univ. 2008 401 443

[28] Yamaki, Kazuhiko Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: the minimal dimension of a canonical measure) Manuscripta Math. 2013 273 306

[29] Yamaki, Kazuhiko Strict supports of canonical measures and applications to the geometric Bogomolov conjecture Compos. Math. 2016 997 1040

[30] Zhang, Shouwu Admissible pairing on a curve Invent. Math. 1993 171 193

[31] Zhang, Shou-Wu Equidistribution of small points on abelian varieties Ann. of Math. (2) 1998 159 165

[32] Zhang, Shou-Wu Gross-Schoen cycles and dualising sheaves Invent. Math. 2010 1 73

Cité par Sources :