Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations
Journal of the American Mathematical Society, Tome 30 (2017) no. 3, pp. 713-768

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that in a certain asymptotic regime, solutions of the Gross-Pitaevskii equation converge to solutions of the incompressible Euler equation, and solutions to the parabolic Ginzburg-Landau equations converge to solutions of a limiting equation which we identify. We work in the setting of the whole plane (and possibly the whole three-dimensional space in the Gross-Pitaevskii case), in the asymptotic limit where $\varepsilon$, the characteristic lengthscale of the vortices, tends to $0$, and in a situation where the number of vortices $N_\varepsilon$ blows up as $\varepsilon \to 0$. The requirements are that $N_\varepsilon$ should blow up faster than $|\mathrm {log } \varepsilon |$ in the Gross-Pitaevskii case, and at most like $|\mathrm {log } \varepsilon |$ in the parabolic case. Both results assume a well-prepared initial condition and regularity of the limiting initial data, and use the regularity of the solution to the limiting equations. In the case of the parabolic Ginzburg-Landau equation, the limiting mean-field dynamical law that we identify coincides with the one proposed by Chapman-Rubinstein-Schatzman and E in the regime $N_\varepsilon \ll |\mathrm {log } \varepsilon |$, but not if $N_\varepsilon$ grows faster.
DOI : 10.1090/jams/872

Serfaty, Sylvia 1

1 Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 4, place Jussieu 75005, Paris, France; and Institut Universitaire de France; and Courant Institute, New York University, 251 Mercer Street, New York, New York 10012
@article{10_1090_jams_872,
     author = {Serfaty, Sylvia},
     title = {Mean field limits of the {Gross-Pitaevskii} and parabolic {Ginzburg-Landau} equations},
     journal = {Journal of the American Mathematical Society},
     pages = {713--768},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2017},
     doi = {10.1090/jams/872},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/872/}
}
TY  - JOUR
AU  - Serfaty, Sylvia
TI  - Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 713
EP  - 768
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/872/
DO  - 10.1090/jams/872
ID  - 10_1090_jams_872
ER  - 
%0 Journal Article
%A Serfaty, Sylvia
%T Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations
%J Journal of the American Mathematical Society
%D 2017
%P 713-768
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/872/
%R 10.1090/jams/872
%F 10_1090_jams_872
Serfaty, Sylvia. Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations. Journal of the American Mathematical Society, Tome 30 (2017) no. 3, pp. 713-768. doi: 10.1090/jams/872

Cité par Sources :