Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension
Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 959-1021

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that any coarse moduli space of stable log-varieties of general type is projective. We also prove subadditivity of log-Kodaira dimension for fiber spaces whose general fiber is of log general type.
DOI : 10.1090/jams/871

Kovács, Sándor 1 ; Patakfalvi, Zsolt 2, 3

1 Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195-4350
2 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000, USA
3 EPFL, SB MATHGEOM CAG MA, B3 444 (Bâtiment MA), Station 8, CH-1015, Lausanne, Switzerland
@article{10_1090_jams_871,
     author = {Kov\~A{\textexclamdown}cs, S\~A{\textexclamdown}ndor and Patakfalvi, Zsolt},
     title = {Projectivity of the moduli space of stable log-varieties and subadditivity of {log-Kodaira} dimension},
     journal = {Journal of the American Mathematical Society},
     pages = {959--1021},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2017},
     doi = {10.1090/jams/871},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/871/}
}
TY  - JOUR
AU  - Kovács, Sándor
AU  - Patakfalvi, Zsolt
TI  - Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 959
EP  - 1021
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/871/
DO  - 10.1090/jams/871
ID  - 10_1090_jams_871
ER  - 
%0 Journal Article
%A Kovács, Sándor
%A Patakfalvi, Zsolt
%T Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension
%J Journal of the American Mathematical Society
%D 2017
%P 959-1021
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/871/
%R 10.1090/jams/871
%F 10_1090_jams_871
Kovács, Sándor; Patakfalvi, Zsolt. Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension. Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 959-1021. doi: 10.1090/jams/871

[1] Abramovich, Dan A high fibered power of a family of varieties of general type dominates a variety of general type Invent. Math. 1997 481 494

[2] Abramovich, Dan, Hassett, Brendan Stable varieties with a twist 2011 1 38

[3] Alexeev, Valery Boundedness and 𝐾² for log surfaces Internat. J. Math. 1994 779 810

[4] Alexeev, Valery Moduli spaces 𝑀_{𝑔,𝑛}(𝑊) for surfaces 1996 1 22

[5] Ascher, Kenneth, Turchet, Amos A fibered power theorem for pairs of log general type Algebra Number Theory 2016 1581 1600

[6] Barth, W., Peters, C., Van De Ven, A. Compact complex surfaces 1984

[7] Birkar, Caucher The Iitaka conjecture 𝐶_{𝑛,𝑚} in dimension six Compos. Math. 2009 1442 1446

[8] Birkar, Caucher, Cascini, Paolo, Hacon, Christopher D., Mckernan, James Existence of minimal models for varieties of log general type J. Amer. Math. Soc. 2010 405 468

[9] Bravi, Paolo, Gandini, Jacopo, Maffei, Andrea, Ruzzi, Alessandro Normality and non-normality of group compactifications in simple projective spaces Ann. Inst. Fourier (Grenoble) 2011

[10] Chen, Jungkai Alfred, Hacon, Christopher D. Kodaira dimension of irregular varieties Invent. Math. 2011 481 500

[11] Conrad, Brian Grothendieck duality and base change 2000

[12] De Concini, Corrado Normality and non normality of certain semigroups and orbit closures 2004 15 35

[13] Deligne, P., Mumford, D. The irreducibility of the space of curves of given genus Inst. Hautes Études Sci. Publ. Math. 1969 75 109

[14] Esnault, Hã©Lã¨Ne, Viehweg, Eckart Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields Compositio Math. 1990 69 85

[15] Flenner, Hubert Die Sätze von Bertini für lokale Ringe Math. Ann. 1977 97 111

[16] Fujino, Osamu Algebraic fiber spaces whose general fibers are of maximal Albanese dimension Nagoya Math. J. 2003 111 127

[17] Fujino, Osamu On maximal Albanese dimensional varieties Proc. Japan Acad. Ser. A Math. Sci. 2013 92 95

[18] Gieseker, D. Global moduli for surfaces of general type Invent. Math. 1977 233 282

[19] Hartshorne, Robin Algebraic geometry 1977

[20] Hartshorne, Robin Stable reflexive sheaves Math. Ann. 1980 121 176

[21] Hassett, Brendan Moduli spaces of weighted pointed stable curves Adv. Math. 2003 316 352

[22] Hassett, Brendan, Hyeon, Donghoon Log canonical models for the moduli space of curves: the first divisorial contraction Trans. Amer. Math. Soc. 2009 4471 4489

[23] Hassett, Brendan, Hyeon, Donghoon Log minimal model program for the moduli space of stable curves: the first flip Ann. of Math. (2) 2013 911 968

[24] Hassett, Brendan, Kovã¡Cs, Sã¡Ndor J. Reflexive pull-backs and base extension J. Algebraic Geom. 2004 233 247

[25] Iitaka, Shigeru Algebraic geometry 1982

[26] Kawakita, Masayuki Inversion of adjunction on log canonicity Invent. Math. 2007 129 133

[27] Kawamata, Yujiro Characterization of abelian varieties Compositio Math. 1981 253 276

[28] Kawamata, Yujiro Minimal models and the Kodaira dimension of algebraic fiber spaces J. Reine Angew. Math. 1985 1 46

[29] Keel, Seã¡N Basepoint freeness for nef and big line bundles in positive characteristic Ann. of Math. (2) 1999 253 286

[30] Keel, Seã¡N, Mori, Shigefumi Quotients by groupoids Ann. of Math. (2) 1997 193 213

[31] Knudsen, Finn F. The projectivity of the moduli space of stable curves. III. The line bundles on 𝑀_{𝑔,𝑛}, and a proof of the projectivity of \overline𝑀_{𝑔,𝑛} in characteristic 0 Math. Scand. 1983 200 212

[32] Kollã¡R, J., Shepherd-Barron, N. I. Threefolds and deformations of surface singularities Invent. Math. 1988 299 338

[33] Kollã¡R, Jã¡Nos Subadditivity of the Kodaira dimension: fibers of general type 1987 361 398

[34] Kollã¡R, Jã¡Nos Projectivity of complete moduli J. Differential Geom. 1990 235 268

[35] Kollã¡R, Jã¡Nos Rational curves on algebraic varieties 1996

[36] Kollã¡R, Jã¡Nos Moduli of varieties of general type 2013 131 157

[37] Kollã¡R, Jã¡Nos Singularities of the minimal model program 2013

[38] Kollã¡R, Jã¡Nos, Kovã¡Cs, Sã¡Ndor J. Log canonical singularities are Du Bois J. Amer. Math. Soc. 2010 791 813

[39] Kollã¡R, Jã¡Nos, Mori, Shigefumi Birational geometry of algebraic varieties 1998

[40] Lai, Ching-Jui Varieties fibered by good minimal models Math. Ann. 2011 533 547

[41] Lazarsfeld, Robert Positivity in algebraic geometry. I 2004

[42] Lazarsfeld, Robert Positivity in algebraic geometry. II 2004

[43] Nakayama, Noboru Zariski-decomposition and abundance 2004

[44] Patakfalvi, Zsolt Semi-positivity in positive characteristics Ann. Sci. Éc. Norm. Supér. (4) 2014 991 1025

[45] Patakfalvi, Zsolt Fibered stable varieties Trans. Amer. Math. Soc. 2016 1837 1869

[46] Patakfalvi, Zsolt, Schwede, Karl Depth of 𝐹-singularities and base change of relative canonical sheaves J. Inst. Math. Jussieu 2014 43 63

[47] Shepherd-Barron, N. I. Degenerations with numerically effective canonical divisor 1983 33 84

[48] Timashã«V, D. A. Equivariant compactifications of reductive groups Mat. Sb. 2003 119 146

[49] Ueno, Kenji Classification theory of algebraic varieties and compact complex spaces 1975

[50] Viehweg, Eckart Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces 1983 329 353

[51] Viehweg, Eckart Weak positivity and the additivity of the Kodaira dimension. II. The local Torelli map 1983 567 589

[52] Viehweg, Eckart Quasi-projective moduli for polarized manifolds 1995

[53] Viehweg, Eckart, Zuo, Kang Base spaces of non-isotrivial families of smooth minimal models 2002 279 328

[54] Wang, Xiaowei, Xu, Chenyang Nonexistence of asymptotic GIT compactification Duke Math. J. 2014 2217 2241

Cité par Sources :