Voir la notice de l'article provenant de la source American Mathematical Society
Kowalczyk, MichaÅ 1 ; Martel, Yvan 2 ; Muñoz, Claudio 3
@article{10_1090_jams_870,
     author = {Kowalczyk, Micha\r{A} and Martel, Yvan and Mu\~A\ensuremath{\pm}oz, Claudio},
     title = {Kink dynamics in the {\dh}\^a{\textasciiacute} model: {Asymptotic} stability for odd perturbations in the energy space},
     journal = {Journal of the American Mathematical Society},
     pages = {769--798},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2017},
     doi = {10.1090/jams/870},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/870/}
}
                      
                      
                    TY - JOUR AU - Kowalczyk, MichaÅ AU - Martel, Yvan AU - Muñoz, Claudio TI - Kink dynamics in the ðâ´ model: Asymptotic stability for odd perturbations in the energy space JO - Journal of the American Mathematical Society PY - 2017 SP - 769 EP - 798 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/870/ DO - 10.1090/jams/870 ID - 10_1090_jams_870 ER -
%0 Journal Article %A Kowalczyk, MichaÅ %A Martel, Yvan %A Muñoz, Claudio %T Kink dynamics in the ðâ´ model: Asymptotic stability for odd perturbations in the energy space %J Journal of the American Mathematical Society %D 2017 %P 769-798 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/870/ %R 10.1090/jams/870 %F 10_1090_jams_870
Kowalczyk, MichaÅ; Martel, Yvan; Muñoz, Claudio. Kink dynamics in the ðâ´ model: Asymptotic stability for odd perturbations in the energy space. Journal of the American Mathematical Society, Tome 30 (2017) no. 3, pp. 769-798. doi: 10.1090/jams/870
[1] , , Some dispersive estimates for Schrödinger equations with repulsive potentials J. Funct. Anal. 2006 1 24
[2] , On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential Amer. J. Math. 2011 1421 1468
[3] A centre-stable manifold for the focussing cubic NLS in â¹âºÂ³ Comm. Math. Phys. 2008 145 205
[4] , , Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation Ann. Sci. Ãc. Norm. Supér. (4) 2015 1327 1381
[5] , On asymptotic stability of solitary waves for nonlinear Schrödinger equations Ann. Inst. H. Poincaré C Anal. Non Linéaire 2003 419 475
[6] On asymptotic stability in 3D of kinks for the ðâ´ model Trans. Amer. Math. Soc. 2008 2581 2614
[7] The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states Comm. Math. Phys. 2011 279 331
[8] On asymptotic stability of moving ground states of the nonlinear Schrödinger equation Trans. Amer. Math. Soc. 2014 2827 2888
[9] , The asymptotic stability of solitons in the cubic NLS equation on the line Appl. Anal. 2014 791 822
[10] , , Sine-Gordon wobbles through Bäcklund transformations Discrete Contin. Dyn. Syst. Ser. S 2011 1047 1056
[11] Existence globale et comportement asymptotique pour lâéquation de Klein-Gordon quasi linéaire à données petites en dimension 1 Ann. Sci. Ãcole Norm. Sup. (4) 2001 1 61
[12] Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations Ann. Inst. Fourier (Grenoble) 2016 1451 1528
[13] , , Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions J. Funct. Anal. 2004 288 323
[14] Nonpersistence of breather families for the perturbed sine Gordon equation Comm. Math. Phys. 1993 397 430
[15] , Dispersive estimates for Schrödinger operators in dimensions one and three Comm. Math. Phys. 2004 157 178
[16] , Asymptotic stability of the black soliton for the Gross-Pitaevskii equation Proc. Lond. Math. Soc. (3) 2015 305 353
[17] , The initial value problem for the cubic nonlinear Klein-Gordon equation Z. Angew. Math. Phys. 2008 1002 1028
[18] , Quadratic nonlinear Klein-Gordon equation in one dimension J. Math. Phys. 2012
[19] , , Stability theory for solitary-wave solutions of scalar field equations Comm. Math. Phys. 1982 351 361
[20] Global existence for nonlinear wave equations Comm. Pure Appl. Math. 1980 43 101
[21] Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions Comm. Pure Appl. Math. 1985 631 641
[22] , On asymptotic stability of kink for relativistic Ginzburg-Landau equations Arch. Ration. Mech. Anal. 2011 213 245
[23] , On asymptotic stability of moving kink for relativistic Ginzburg-Landau equation Comm. Math. Phys. 2011 225 252
[24] , Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension J. Amer. Math. Soc. 2006 815 920
[25] , Nonexistence of small-amplitude breather solutions in ðâ´ theory Phys. Rev. Lett. 1987 747 750
[26] , A remark on long range scattering for the nonlinear Klein-Gordon equation J. Hyperbolic Differ. Equ. 2005 77 89
[27] , A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation Lett. Math. Phys. 2005 249 258
[28] , Topological solitons 2004
[29] , A Liouville theorem for the critical generalized Korteweg-de Vries equation J. Math. Pures Appl. (9) 2000 339 425
[30] , Asymptotic stability of solitons for subcritical generalized KdV equations Arch. Ration. Mech. Anal. 2001 219 254
[31] , Asymptotic stability of solitons of the subcritical gKdV equations revisited Nonlinearity 2005 55 80
[32] , ð¿Â² stability of solitons for KdV equation Int. Math. Res. Not. 2003 735 753
[33] , The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation Ann. of Math. (2) 2005 157 222
[34] , Special functions of mathematical physics 1988
[35] , Eigenvalues, and instabilities of solitary waves Philos. Trans. Roy. Soc. London Ser. A 1992 47 94
[36] , An introduction to quantum field theory 1995
[37] Wobbling kinks in ðâ´ and sine-Gordon theory J. Math. Phys. 1983 1439 1443
[38] Normal forms and quadratic nonlinear Klein-Gordon equations Comm. Pure Appl. Math. 1985 685 696
[39] Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions Comm. Math. Phys. 1993 297 320
[40] Resonances in ð-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory Ann. of Math. (2) 1973 247 274
[41] , Time dependent resonance theory Geom. Funct. Anal. 1998 1086 1128
[42] , Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations Invent. Math. 1999 9 74
[43] Dispersive decay for the 1D Klein-Gordon equation with variable coefficient nonlinearities Trans. Amer. Math. Soc. 2016 2081 2113
[44] Eigenfunction Expansions Associated with Second-Order Differential Equations 1946 175
[45] Kinks and domain walls 2006
[46] , Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions Comm. Pure Appl. Math. 2002 153 216
[47] Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua Math. Phys. Anal. Geom. 2002 319 413
[48] , Cosmic strings and other topological defects 1994
[49] The ð_{ð,ð}-continuity of the Schrödinger wave operators on the line Comm. Math. Phys. 1999 507 520
[50] ð¿^{ð}-ð¿^{ðÌ} estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential J. Funct. Anal. 2000 37 68
[51] Lyapunov stability of ground states of nonlinear dispersive evolution equations Comm. Pure Appl. Math. 1986 51 67
[52] From superconductors and four-manifolds to weak interactions Bull. Amer. Math. Soc. (N.S.) 2007 361 391
Cité par Sources :
