Kink dynamics in the 𝜙⁴ model: Asymptotic stability for odd perturbations in the energy space
Journal of the American Mathematical Society, Tome 30 (2017) no. 3, pp. 769-798

Voir la notice de l'article provenant de la source American Mathematical Society

We consider a classical equation known as the $\phi ^4$ model in one space dimension. The kink, defined by $H(x)=\tanh (x/{\sqrt {2}})$, is an explicit stationary solution of this model. From a result of Henry, Perez and Wreszinski it is known that the kink is orbitally stable with respect to small perturbations of the initial data in the energy space. In this paper we show asymptotic stability of the kink for odd perturbations in the energy space. The proof is based on Virial-type estimates partly inspired from previous works of Martel and Merle on asymptotic stability of solitons for the generalized Korteweg-de Vries equations. However, this approach has to be adapted to additional difficulties, pointed out by Soffer and Weinstein in the case of general Klein-Gordon equations with potential: the interactions of the so-called internal oscillation mode with the radiation, and the different rates of decay of these two components of the solution in large time.
DOI : 10.1090/jams/870

Kowalczyk, Michał 1 ; Martel, Yvan 2 ; Muñoz, Claudio 3

1 Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
2 CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
3 CNRS and Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
@article{10_1090_jams_870,
     author = {Kowalczyk, Micha\r{A}‚ and Martel, Yvan and Mu\~A\ensuremath{\pm}oz, Claudio},
     title = {Kink dynamics in the {\dh}œ™\^a{\textasciiacute} model: {Asymptotic} stability for odd perturbations in the energy space},
     journal = {Journal of the American Mathematical Society},
     pages = {769--798},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2017},
     doi = {10.1090/jams/870},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/870/}
}
TY  - JOUR
AU  - Kowalczyk, Michał
AU  - Martel, Yvan
AU  - Muñoz, Claudio
TI  - Kink dynamics in the 𝜙⁴ model: Asymptotic stability for odd perturbations in the energy space
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 769
EP  - 798
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/870/
DO  - 10.1090/jams/870
ID  - 10_1090_jams_870
ER  - 
%0 Journal Article
%A Kowalczyk, Michał
%A Martel, Yvan
%A Muñoz, Claudio
%T Kink dynamics in the 𝜙⁴ model: Asymptotic stability for odd perturbations in the energy space
%J Journal of the American Mathematical Society
%D 2017
%P 769-798
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/870/
%R 10.1090/jams/870
%F 10_1090_jams_870
Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio. Kink dynamics in the 𝜙⁴ model: Asymptotic stability for odd perturbations in the energy space. Journal of the American Mathematical Society, Tome 30 (2017) no. 3, pp. 769-798. doi: 10.1090/jams/870

[1] Barcelã³, Juan A., Ruiz, Alberto, Vega, Luis Some dispersive estimates for Schrödinger equations with repulsive potentials J. Funct. Anal. 2006 1 24

[2] Bambusi, Dario, Cuccagna, Scipio On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential Amer. J. Math. 2011 1421 1468

[3] Beceanu, Marius A centre-stable manifold for the focussing cubic NLS in ℝ¹⁺³ Comm. Math. Phys. 2008 145 205

[4] Bethuel, Fabrice, Gravejat, Philippe, Smets, Didier Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation Ann. Sci. Éc. Norm. Supér. (4) 2015 1327 1381

[5] Buslaev, Vladimir S., Sulem, Catherine On asymptotic stability of solitary waves for nonlinear Schrödinger equations Ann. Inst. H. Poincaré C Anal. Non Linéaire 2003 419 475

[6] Cuccagna, Scipio On asymptotic stability in 3D of kinks for the 𝜙⁴ model Trans. Amer. Math. Soc. 2008 2581 2614

[7] Cuccagna, Scipio The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states Comm. Math. Phys. 2011 279 331

[8] Cuccagna, Scipio On asymptotic stability of moving ground states of the nonlinear Schrödinger equation Trans. Amer. Math. Soc. 2014 2827 2888

[9] Cuccagna, Scipio, Pelinovsky, Dmitry E. The asymptotic stability of solitons in the cubic NLS equation on the line Appl. Anal. 2014 791 822

[10] Cuenda, Sara, Quintero, Niurka R., Sã¡Nchez, Angel Sine-Gordon wobbles through Bäcklund transformations Discrete Contin. Dyn. Syst. Ser. S 2011 1047 1056

[11] Delort, Jean-Marc Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1 Ann. Sci. École Norm. Sup. (4) 2001 1 61

[12] Delort, Jean-Marc Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations Ann. Inst. Fourier (Grenoble) 2016 1451 1528

[13] Delort, Jean-Marc, Fang, Daoyuan, Xue, Ruying Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions J. Funct. Anal. 2004 288 323

[14] Denzler, Jochen Nonpersistence of breather families for the perturbed sine Gordon equation Comm. Math. Phys. 1993 397 430

[15] Goldberg, M., Schlag, W. Dispersive estimates for Schrödinger operators in dimensions one and three Comm. Math. Phys. 2004 157 178

[16] Gravejat, Philippe, Smets, Didier Asymptotic stability of the black soliton for the Gross-Pitaevskii equation Proc. Lond. Math. Soc. (3) 2015 305 353

[17] Hayashi, Nakao, Naumkin, Pavel I. The initial value problem for the cubic nonlinear Klein-Gordon equation Z. Angew. Math. Phys. 2008 1002 1028

[18] Hayashi, Nakao, Naumkin, Pavel I. Quadratic nonlinear Klein-Gordon equation in one dimension J. Math. Phys. 2012

[19] Henry, Daniel B., Perez, J. Fernando, Wreszinski, Walter F. Stability theory for solitary-wave solutions of scalar field equations Comm. Math. Phys. 1982 351 361

[20] Klainerman, Sergiu Global existence for nonlinear wave equations Comm. Pure Appl. Math. 1980 43 101

[21] Klainerman, Sergiu Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions Comm. Pure Appl. Math. 1985 631 641

[22] Kopylova, E., Komech, A. I. On asymptotic stability of kink for relativistic Ginzburg-Landau equations Arch. Ration. Mech. Anal. 2011 213 245

[23] Kopylova, E. A., Komech, A. I. On asymptotic stability of moving kink for relativistic Ginzburg-Landau equation Comm. Math. Phys. 2011 225 252

[24] Krieger, J., Schlag, W. Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension J. Amer. Math. Soc. 2006 815 920

[25] Segur, Harvey, Kruskal, Martin D. Nonexistence of small-amplitude breather solutions in 𝜙⁴ theory Phys. Rev. Lett. 1987 747 750

[26] Lindblad, Hans, Soffer, Avy A remark on long range scattering for the nonlinear Klein-Gordon equation J. Hyperbolic Differ. Equ. 2005 77 89

[27] Lindblad, Hans, Soffer, Avy A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation Lett. Math. Phys. 2005 249 258

[28] Manton, Nicholas, Sutcliffe, Paul Topological solitons 2004

[29] Martel, Yvan, Merle, Frank A Liouville theorem for the critical generalized Korteweg-de Vries equation J. Math. Pures Appl. (9) 2000 339 425

[30] Martel, Yvan, Merle, Frank Asymptotic stability of solitons for subcritical generalized KdV equations Arch. Ration. Mech. Anal. 2001 219 254

[31] Martel, Yvan, Merle, Frank Asymptotic stability of solitons of the subcritical gKdV equations revisited Nonlinearity 2005 55 80

[32] Merle, F., Vega, L. 𝐿² stability of solitons for KdV equation Int. Math. Res. Not. 2003 735 753

[33] Merle, Frank, Raphael, Pierre The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation Ann. of Math. (2) 2005 157 222

[34] Nikiforov, Arnold F., Uvarov, Vasilii B. Special functions of mathematical physics 1988

[35] Pego, Robert L., Weinstein, Michael I. Eigenvalues, and instabilities of solitary waves Philos. Trans. Roy. Soc. London Ser. A 1992 47 94

[36] Peskin, Michael E., Schroeder, Daniel V. An introduction to quantum field theory 1995

[37] Segur, Harvey Wobbling kinks in 𝜑⁴ and sine-Gordon theory J. Math. Phys. 1983 1439 1443

[38] Shatah, Jalal Normal forms and quadratic nonlinear Klein-Gordon equations Comm. Pure Appl. Math. 1985 685 696

[39] Sigal, I. M. Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions Comm. Math. Phys. 1993 297 320

[40] Simon, Barry Resonances in 𝑛-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory Ann. of Math. (2) 1973 247 274

[41] Soffer, A., Weinstein, M. I. Time dependent resonance theory Geom. Funct. Anal. 1998 1086 1128

[42] Soffer, A., Weinstein, M. I. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations Invent. Math. 1999 9 74

[43] Sterbenz, Jacob Dispersive decay for the 1D Klein-Gordon equation with variable coefficient nonlinearities Trans. Amer. Math. Soc. 2016 2081 2113

[44] Titchmarsh, E. C. Eigenfunction Expansions Associated with Second-Order Differential Equations 1946 175

[45] Vachaspati, Tanmay Kinks and domain walls 2006

[46] Tsai, Tai-Peng, Yau, Horng-Tzer Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions Comm. Pure Appl. Math. 2002 153 216

[47] Vartanian, A. H. Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua Math. Phys. Anal. Geom. 2002 319 413

[48] Vilenkin, A., Shellard, E. P. S. Cosmic strings and other topological defects 1994

[49] Weder, Ricardo The 𝑊_{𝑘,𝑝}-continuity of the Schrödinger wave operators on the line Comm. Math. Phys. 1999 507 520

[50] Weder, Ricardo 𝐿^{𝑝}-𝐿^{𝑝̇} estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential J. Funct. Anal. 2000 37 68

[51] Weinstein, Michael I. Lyapunov stability of ground states of nonlinear dispersive evolution equations Comm. Pure Appl. Math. 1986 51 67

[52] Witten, Edward From superconductors and four-manifolds to weak interactions Bull. Amer. Math. Soc. (N.S.) 2007 361 391

Cité par Sources :