@article{10_1090_jams_869,
author = {Suk, Andrew},
title = {On the {Erd\H{o}s-Szekeres} convex polygon problem},
journal = {Journal of the American Mathematical Society},
pages = {1047--1053},
year = {2017},
volume = {30},
number = {4},
doi = {10.1090/jams/869},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/869/}
}
Suk, Andrew. On the Erdős-Szekeres convex polygon problem. Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1047-1053. doi: 10.1090/jams/869
[1] , A positive fraction Erdős-Szekeres theorem Discrete Comput. Geom. 1998 335 342
[2] , , Research problems in discrete geometry 2005
[3] , Forced convex 𝑛-gons in the plane Discrete Comput. Geom. 1998 367 371
[4] A decomposition theorem for partially ordered sets Ann. of Math. (2) 1950 161 166
[5] , , The Erdős-Szekeres problem for non-crossing convex sets Mathematika 2014 463 484
[6] Some of my favorite problems and results 1997 47 67
[7] , A combinatorial problem in geometry Compositio Math. 1935 463 470
[8] , On some extremum problems in elementary geometry Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1960/61 53 62
[9] , , , Erdős-Szekeres-type theorems for monotone paths and convex bodies Proc. Lond. Math. Soc. (3) 2012 953 982
[10] , , , Order types of convex bodies Order 2011 121 130
[11] Ramsey-remainder for convex sets and the Erdős-Szekeres theorem Discrete Appl. Math. 2001 163 175
[12] , Point configurations in 𝑑-space without large subsets in convex position Discrete Comput. Geom. 2003 277 286
[13] , Finding convex sets among points in the plane Discrete Comput. Geom. 1998 405 410
[14] Lectures on discrete geometry 2002
[15] , The Erdős-Szekeres problem on points in convex position—a survey Bull. Amer. Math. Soc. (N.S.) 2000 437 458
[16] , Ramsey theory, integer partitions and a new proof of the Erdős-Szekeres theorem Adv. Math. 2014 1107 1129
[17] , An improved upper bound for the Erdős-Szekeres conjecture Discrete Comput. Geom. 2016 165 180
[18] , Erdős-Szekeres without induction Discrete Comput. Geom. 2016 963 971
[19] , Canonical theorems for convex sets Discrete Comput. Geom. 1998 427 435
[20] , The partitioned version of the Erdős-Szekeres theorem Discrete Comput. Geom. 2002 625 637
[21] A note on order-type homogeneous point sets Mathematika 2014 37 42
[22] , The Erdős-Szekeres theorem: upper bounds and related results 2005 557 568
[23] , Note on the Erdős-Szekeres theorem Discrete Comput. Geom. 1998 457 459
Cité par Sources :