Voir la notice de l'article provenant de la source American Mathematical Society
Bhargava, Manjul 1 ; Gross, Benedict 2 ; Wang, Xiaoheng 1
@article{10_1090_jams_863,
author = {Bhargava, Manjul and Gross, Benedict and Wang, Xiaoheng},
title = {A positive proportion of locally soluble hyperelliptic curves over \^a have no point over any odd degree extension},
journal = {Journal of the American Mathematical Society},
pages = {451--493},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2017},
doi = {10.1090/jams/863},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/863/}
}
TY - JOUR AU - Bhargava, Manjul AU - Gross, Benedict AU - Wang, Xiaoheng TI - A positive proportion of locally soluble hyperelliptic curves over â have no point over any odd degree extension JO - Journal of the American Mathematical Society PY - 2017 SP - 451 EP - 493 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/863/ DO - 10.1090/jams/863 ID - 10_1090_jams_863 ER -
%0 Journal Article %A Bhargava, Manjul %A Gross, Benedict %A Wang, Xiaoheng %T A positive proportion of locally soluble hyperelliptic curves over â have no point over any odd degree extension %J Journal of the American Mathematical Society %D 2017 %P 451-493 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/863/ %R 10.1090/jams/863 %F 10_1090_jams_863
Bhargava, Manjul; Gross, Benedict; Wang, Xiaoheng. A positive proportion of locally soluble hyperelliptic curves over â have no point over any odd degree extension. Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 451-493. doi: 10.1090/jams/863
[1] , Arithmetic invariant theory 2014 33 54
[2] , The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point 2013 23 91
[3] , Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves Ann. of Math. (2) 2015 191 242
[4] , Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0 Ann. of Math. (2) 2015 587 621
[5] , Finiteness theorems for binary forms with given discriminant Proc. London Math. Soc. (3) 1972 385 394
[6] , Two-cover descent on hyperelliptic curves Math. Comp. 2009 2347 2370
[7] The Mordell-Weil group of curves of genus 2 1983 27 60
[8] , Algebraic families of nonzero elements of Shafarevich-Tate groups J. Amer. Math. Soc. 2000 83 99
[9] , La descente sur les variétés rationnelles. II Duke Math. J. 1987 375 492
[10] , , , Random polynomials having few or no real zeros J. Amer. Math. Soc. 2002 857 892
[11] , Classification of vector bundles of rank 2 on hyperelliptic curves Invent. Math. 1976/77 161 185
[12] , Self-duality of Selmer groups Math. Proc. Cambridge Philos. Soc. 2009 257 267
[13] , Regulator constants and the parity conjecture Invent. Math. 2009 23 71
[14] Group law on the intersection of two quadrics Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1980 217 239
[15] Hanoi lectures on the arithmetic of hyperelliptic curves Acta Math. Vietnam. 2012 579 588
[16] On Bhargavaâs representation and Vinbergâs invariant theory 2011 317 321
[17] Duality theorems for curves over ð-adic fields Invent. Math. 1969 120 136
[18] Introduction to algebraic ð¾-theory 1971
[19] Binary forms and orders of algebraic number fields Invent. Math. 1989 219 235
[20] , The Cassels-Tate pairing on polarized abelian varieties Ann. of Math. (2) 1999 1109 1149
[21] , A local-global principle for densities 1999 241 244
[22] , Explicit descent for Jacobians of cyclic covers of the projective line J. Reine Angew. Math. 1997 141 188
[23] Groupes algébriques et corps de classes 1959 202
[24] Chabauty for symmetric powers of curves Algebra Number Theory 2009 209 236
[25] Finite descent obstructions and rational points on curves Algebra Number Theory 2007 349 391
[26] , Explicit Selmer groups for cyclic covers of â¹ Acta Arith. 2013 133 148
[27] Weak corestriction principle for non-abelian Galois cohomology Homology Homotopy Appl. 2003 219 249
[28] Pencils of quadrics and Jacobians of hyperelliptic curves 2013 148
[29] Rings and ideals parameterized by binary ð-ic forms J. Lond. Math. Soc. (2) 2011 208 231
[30] Parametrization of ideal classes in rings associated to binary forms J. Reine Angew. Math. 2014 169 199
Cité par Sources :