A classification of irreducible admissible mod 𝑝 representations of 𝑝-adic reductive groups
Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 495-559

Voir la notice de l'article provenant de la source American Mathematical Society

Let $F$ be a locally compact non-archimedean field, $p$ its residue characteristic, and $\textbf {G}$ a connected reductive group over $F$. Let $C$ be an algebraically closed field of characteristic $p$. We give a complete classification of irreducible admissible $C$-representations of $G=\mathbf {G}(F)$, in terms of supercuspidal $C$-representations of the Levi subgroups of $G$, and parabolic induction. Thus we push to their natural conclusion the ideas of the third author, who treated the case $\mathbf {G}=\mathrm {GL}_m$, as further expanded by the first author, who treated split groups $\mathbf {G}$. As in the split case, we first get a classification in terms of supersingular representations of Levi subgroups, and as a consequence show that supersingularity is the same as supercuspidality.
DOI : 10.1090/jams/862

Abe, N. 1 ; Henniart, G. 2 ; Herzig, F. 3 ; Vignéras, M.-F. 4

1 Creative Research Institution (CRIS), Hokkaido University, N21, W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
2 Laboratoire de Mathématiques d’Orsay, Université de Paris-Sud, Orsay cedex F-91405, France; CNRS, Orsay cedex F-91405, France
3 Department of Mathematics, University of Toronto, 40 St. George Street, Room 6290, Toronto, Ontario M5S 2E4, Canada
4 Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, Paris 75013, France
@article{10_1090_jams_862,
     author = {Abe, N. and Henniart, G. and Herzig, F. and Vign\~A{\textcopyright}ras, M.-F.},
     title = {A classification of irreducible admissible mod {\dh}‘ representations of {\dh}‘-adic reductive groups},
     journal = {Journal of the American Mathematical Society},
     pages = {495--559},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2017},
     doi = {10.1090/jams/862},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/862/}
}
TY  - JOUR
AU  - Abe, N.
AU  - Henniart, G.
AU  - Herzig, F.
AU  - Vignéras, M.-F.
TI  - A classification of irreducible admissible mod 𝑝 representations of 𝑝-adic reductive groups
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 495
EP  - 559
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/862/
DO  - 10.1090/jams/862
ID  - 10_1090_jams_862
ER  - 
%0 Journal Article
%A Abe, N.
%A Henniart, G.
%A Herzig, F.
%A Vignéras, M.-F.
%T A classification of irreducible admissible mod 𝑝 representations of 𝑝-adic reductive groups
%J Journal of the American Mathematical Society
%D 2017
%P 495-559
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/862/
%R 10.1090/jams/862
%F 10_1090_jams_862
Abe, N.; Henniart, G.; Herzig, F.; Vignéras, M.-F. A classification of irreducible admissible mod 𝑝 representations of 𝑝-adic reductive groups. Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 495-559. doi: 10.1090/jams/862

[1] Abdellatif, Ramla Classification des représentations modulo 𝑝 de 𝑆𝐿(2,𝐹) Bull. Soc. Math. France 2014 537 589

[2] Abe, Noriyuki On a classification of irreducible admissible modulo 𝑝 representations of a 𝑝-adic split reductive group Compos. Math. 2013 2139 2168

[3] Barthel, L., Livnã©, R. Irreducible modular representations of 𝐺𝐿₂ of a local field Duke Math. J. 1994 261 292

[4] Barthel, L., Livnã©, R. Modular representations of 𝐺𝐿₂ of a local field: the ordinary, unramified case J. Number Theory 1995 1 27

[5] Bernstein, I. N., Zelevinsky, A. V. Induced representations of reductive 𝔭-adic groups. I Ann. Sci. École Norm. Sup. (4) 1977 441 472

[6] Borel, Armand Linear algebraic groups 1991

[7] Borel, Armand, Tits, Jacques Groupes réductifs Inst. Hautes Études Sci. Publ. Math. 1965 55 150

[8] Breuil, Christophe Sur quelques représentations modulaires et 𝑝-adiques de 𝐺𝐿₂(𝐐_{𝐩}). I Compositio Math. 2003 165 188

[9] Bruhat, F., Tits, J. Groupes réductifs sur un corps local Inst. Hautes Études Sci. Publ. Math. 1972 5 251

[10] Bruhat, F., Tits, J. Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée Inst. Hautes Études Sci. Publ. Math. 1984 197 376

[11] Cabanes, Marc, Enguehard, Michel Representation theory of finite reductive groups 2004

[12] Cheng, Chuangxun Mod 𝑝 representations of 𝑆𝐿₂(ℚ_{𝕡}) J. Number Theory 2013 1312 1330

[13] Deodhar, Vinay V. Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function Invent. Math. 1977 187 198

[14] Emerton, Matthew Ordinary parts of admissible representations of 𝑝-adic reductive groups I. Definition and first properties Astérisque 2010 355 402

[15] Grosse-Klã¶Nne, Elmar On special representations of 𝑝-adic reductive groups Duke Math. J. 2014 2179 2216

[16] GroãŸE-Klã¶Nne, Elmar On the universal module of 𝑝-adic spherical Hecke algebras Amer. J. Math. 2014 599 652

[17] Henniart, Guy Sur les représentations modulo 𝑝 de groupes réductifs 𝑝-adiques 2009 41 55

[18] Henniart, Guy, Vignã©Ras, Marie-France A Satake isomorphism for representations modulo 𝑝 of reductive groups over local fields J. Reine Angew. Math. 2015 33 75

[19] Henniart, Guy, Vigneras, Marie-France Comparison of compact induction with parabolic induction Pacific J. Math. 2012 457 495

[20] Herzig, Florian A Satake isomorphism in characteristic 𝑝 Compos. Math. 2011 263 283

[21] Herzig, Florian The classification of irreducible admissible mod 𝑝 representations of a 𝑝-adic 𝐺𝐿_{𝑛} Invent. Math. 2011 373 434

[22] Kottwitz, Robert E. Isocrystals with additional structure. II Compositio Math. 1997 255 339

[23] Kozioå‚, Karol, Xu, Peng Hecke modules and supersingular representations of 𝑈(2,1) Represent. Theory 2015 56 93

[24] Ly, Tony Représentations de Steinberg modulo 𝑝 pour un groupe réductif sur un corps local Pacific J. Math. 2015 425 462

[25] Ly, Tony Des représentations modulo 𝑝 de 𝐺𝐿(2,𝐷), 𝐷 algèbre à division sur un corps local J. Number Theory 2015 54 106

[26] Mã­Nguez, Alberto, Sã©Cherre, Vincent Représentations lisses modulo ℓ de 𝐺𝐿ₘ(𝐷) Duke Math. J. 2014 795 887

[27] Montgomery, Deane, Zippin, Leo Topological transformation groups 1974

[28] Ollivier, Rachel Parabolic induction and Hecke modules in characteristic 𝑝 for 𝑝-adic 𝐺𝐿_{𝑛} Algebra Number Theory 2010 701 742

[29] Ollivier, Rachel An inverse Satake isomorphism in characteristic 𝑝 Selecta Math. (N.S.) 2015 727 761

[30] Platonov, Vladimir, Rapinchuk, Andrei Algebraic groups and number theory 1994

[31] Prasad, Gopal, Raghunathan, M. S. On the Kneser-Tits problem Comment. Math. Helv. 1985 107 121

[32] Tits, J. Reductive groups over local fields 1979 29 69

[33] Vignã©Ras, Marie-France Représentations irréductibles de 𝐺𝐿(2,𝐹) modulo 𝑝 2007 548 563

[34] Vigneras, Marie-France The pro-𝑝-Iwahori Hecke algebra of a reductive 𝑝-adic group I Compos. Math. 2016 693 753

[35] Zelevinsky, A. V. Induced representations of reductive 𝔭-adic groups. II. On irreducible representations of 𝔊𝔏(𝔫) Ann. Sci. École Norm. Sup. (4) 1980 165 210

Cité par Sources :