Abe, N.  1 ; Henniart, G.  2 ; Herzig, F.  3 ; Vignéras, M.-F.  4
@article{10_1090_jams_862,
author = {Abe, N. and Henniart, G. and Herzig, F. and Vign\'eras, M.-F.},
title = {A classification of irreducible admissible mod \ensuremath{\mathit{p}} representations of \ensuremath{\mathit{p}}-adic reductive groups},
journal = {Journal of the American Mathematical Society},
pages = {495--559},
year = {2017},
volume = {30},
number = {2},
doi = {10.1090/jams/862},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/862/}
}
TY - JOUR AU - Abe, N. AU - Henniart, G. AU - Herzig, F. AU - Vignéras, M.-F. TI - A classification of irreducible admissible mod 𝑝 representations of 𝑝-adic reductive groups JO - Journal of the American Mathematical Society PY - 2017 SP - 495 EP - 559 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/862/ DO - 10.1090/jams/862 ID - 10_1090_jams_862 ER -
%0 Journal Article %A Abe, N. %A Henniart, G. %A Herzig, F. %A Vignéras, M.-F. %T A classification of irreducible admissible mod 𝑝 representations of 𝑝-adic reductive groups %J Journal of the American Mathematical Society %D 2017 %P 495-559 %V 30 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/jams/862/ %R 10.1090/jams/862 %F 10_1090_jams_862
Abe, N.; Henniart, G.; Herzig, F.; Vignéras, M.-F. A classification of irreducible admissible mod 𝑝 representations of 𝑝-adic reductive groups. Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 495-559. doi: 10.1090/jams/862
[1] Classification des représentations modulo 𝑝 de 𝑆𝐿(2,𝐹) Bull. Soc. Math. France 2014 537 589
[2] On a classification of irreducible admissible modulo 𝑝 representations of a 𝑝-adic split reductive group Compos. Math. 2013 2139 2168
[3] , Irreducible modular representations of 𝐺𝐿₂ of a local field Duke Math. J. 1994 261 292
[4] , Modular representations of 𝐺𝐿₂ of a local field: the ordinary, unramified case J. Number Theory 1995 1 27
[5] , Induced representations of reductive 𝔭-adic groups. I Ann. Sci. École Norm. Sup. (4) 1977 441 472
[6] Linear algebraic groups 1991
[7] , Groupes réductifs Inst. Hautes Études Sci. Publ. Math. 1965 55 150
[8] Sur quelques représentations modulaires et 𝑝-adiques de 𝐺𝐿₂(𝐐_{𝐩}). I Compositio Math. 2003 165 188
[9] , Groupes réductifs sur un corps local Inst. Hautes Études Sci. Publ. Math. 1972 5 251
[10] , Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée Inst. Hautes Études Sci. Publ. Math. 1984 197 376
[11] , Representation theory of finite reductive groups 2004
[12] Mod 𝑝 representations of 𝑆𝐿₂(ℚ_{𝕡}) J. Number Theory 2013 1312 1330
[13] Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function Invent. Math. 1977 187 198
[14] Ordinary parts of admissible representations of 𝑝-adic reductive groups I. Definition and first properties Astérisque 2010 355 402
[15] On special representations of 𝑝-adic reductive groups Duke Math. J. 2014 2179 2216
[16] On the universal module of 𝑝-adic spherical Hecke algebras Amer. J. Math. 2014 599 652
[17] Sur les représentations modulo 𝑝 de groupes réductifs 𝑝-adiques 2009 41 55
[18] , A Satake isomorphism for representations modulo 𝑝 of reductive groups over local fields J. Reine Angew. Math. 2015 33 75
[19] , Comparison of compact induction with parabolic induction Pacific J. Math. 2012 457 495
[20] A Satake isomorphism in characteristic 𝑝 Compos. Math. 2011 263 283
[21] The classification of irreducible admissible mod 𝑝 representations of a 𝑝-adic 𝐺𝐿_{𝑛} Invent. Math. 2011 373 434
[22] Isocrystals with additional structure. II Compositio Math. 1997 255 339
[23] , Hecke modules and supersingular representations of 𝑈(2,1) Represent. Theory 2015 56 93
[24] Représentations de Steinberg modulo 𝑝 pour un groupe réductif sur un corps local Pacific J. Math. 2015 425 462
[25] Des représentations modulo 𝑝 de 𝐺𝐿(2,𝐷), 𝐷 algèbre à division sur un corps local J. Number Theory 2015 54 106
[26] , Représentations lisses modulo ℓ de 𝐺𝐿ₘ(𝐷) Duke Math. J. 2014 795 887
[27] , Topological transformation groups 1974
[28] Parabolic induction and Hecke modules in characteristic 𝑝 for 𝑝-adic 𝐺𝐿_{𝑛} Algebra Number Theory 2010 701 742
[29] An inverse Satake isomorphism in characteristic 𝑝 Selecta Math. (N.S.) 2015 727 761
[30] , Algebraic groups and number theory 1994
[31] , On the Kneser-Tits problem Comment. Math. Helv. 1985 107 121
[32] Reductive groups over local fields 1979 29 69
[33] Représentations irréductibles de 𝐺𝐿(2,𝐹) modulo 𝑝 2007 548 563
[34] The pro-𝑝-Iwahori Hecke algebra of a reductive 𝑝-adic group I Compos. Math. 2016 693 753
[35] Induced representations of reductive 𝔭-adic groups. II. On irreducible representations of 𝔊𝔏(𝔫) Ann. Sci. École Norm. Sup. (4) 1980 165 210
Cité par Sources :