Decoupling, exponential sums and the Riemann zeta function
Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 205-224

Voir la notice de l'article provenant de la source American Mathematical Society

We establish a new decoupling inequality for curves in the spirit of earlier work of C. Demeter and the author which implies a new mean value theorem for certain exponential sums crucial to the Bombieri-Iwaniec method as developed further in the work of Huxley. In particular, this leads to an improved bound $|\zeta (\frac {1}{2} + it)| \ll t^{13/84 + \varepsilon }$ for the zeta function on the critical line.
DOI : 10.1090/jams/860

Bourgain, J. 1

1 Institute for Advanced Study, Princeton, New Jersey 08540
@article{10_1090_jams_860,
     author = {Bourgain, J.},
     title = {Decoupling, exponential sums and the {Riemann} zeta function},
     journal = {Journal of the American Mathematical Society},
     pages = {205--224},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2017},
     doi = {10.1090/jams/860},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/860/}
}
TY  - JOUR
AU  - Bourgain, J.
TI  - Decoupling, exponential sums and the Riemann zeta function
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 205
EP  - 224
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/860/
DO  - 10.1090/jams/860
ID  - 10_1090_jams_860
ER  - 
%0 Journal Article
%A Bourgain, J.
%T Decoupling, exponential sums and the Riemann zeta function
%J Journal of the American Mathematical Society
%D 2017
%P 205-224
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/860/
%R 10.1090/jams/860
%F 10_1090_jams_860
Bourgain, J. Decoupling, exponential sums and the Riemann zeta function. Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 205-224. doi: 10.1090/jams/860

[1] Bombieri, E., Iwaniec, H. On the order of 𝜁(1\over2+𝑖𝑡) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1986 449 472

[2] Bombieri, E., Iwaniec, H. Some mean-value theorems for exponential sums Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1986 473 486

[3] Bourgain, Jean, Guth, Larry Bounds on oscillatory integral operators based on multilinear estimates Geom. Funct. Anal. 2011 1239 1295

[4] Bennett, Jonathan, Carbery, Anthony, Tao, Terence On the multilinear restriction and Kakeya conjectures Acta Math. 2006 261 302

[5] Huxley, M. N. Area, lattice points, and exponential sums 1996

[6] Huxley, M. N. Exponential sums and the Riemann zeta function. IV Proc. London Math. Soc. (3) 1993 1 40

[7] Huxley, M. N. Exponential sums and the Riemann zeta function. V Proc. London Math. Soc. (3) 2005 1 41

[8] Huxley, M. N., Kolesnik, G. Exponential sums and the Riemann zeta function. III Proc. London Math. Soc. (3) 1991 449 468

[9] Huxley, M. N., Watt, N. Exponential sums and the Riemann zeta function Proc. London Math. Soc. (3) 1988 1 24

[10] Sargos, Patrick Points entiers au voisinage d’une courbe, sommes trigonométriques courtes et paires d’exposants Proc. London Math. Soc. (3) 1995 285 312

[11] Titchmarsh, E. C. The Theory of the Riemann Zeta-Function 1951

Cité par Sources :