@article{10_1090_jams_860,
author = {Bourgain, J.},
title = {Decoupling, exponential sums and the {Riemann} zeta function},
journal = {Journal of the American Mathematical Society},
pages = {205--224},
year = {2017},
volume = {30},
number = {1},
doi = {10.1090/jams/860},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/860/}
}
Bourgain, J. Decoupling, exponential sums and the Riemann zeta function. Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 205-224. doi: 10.1090/jams/860
[1] , On the order of 𝜁(1\over2+𝑖𝑡) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1986 449 472
[2] , Some mean-value theorems for exponential sums Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1986 473 486
[3] , Bounds on oscillatory integral operators based on multilinear estimates Geom. Funct. Anal. 2011 1239 1295
[4] , , On the multilinear restriction and Kakeya conjectures Acta Math. 2006 261 302
[5] Area, lattice points, and exponential sums 1996
[6] Exponential sums and the Riemann zeta function. IV Proc. London Math. Soc. (3) 1993 1 40
[7] Exponential sums and the Riemann zeta function. V Proc. London Math. Soc. (3) 2005 1 41
[8] , Exponential sums and the Riemann zeta function. III Proc. London Math. Soc. (3) 1991 449 468
[9] , Exponential sums and the Riemann zeta function Proc. London Math. Soc. (3) 1988 1 24
[10] Points entiers au voisinage d’une courbe, sommes trigonométriques courtes et paires d’exposants Proc. London Math. Soc. (3) 1995 285 312
[11] The Theory of the Riemann Zeta-Function 1951
Cité par Sources :