Gröbner methods for representations of combinatorial categories
Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 159-203

Voir la notice de l'article provenant de la source American Mathematical Society

Given a category $\mathcal {C}$ of a combinatorial nature, we study the following fundamental question: how do combinatorial properties of $\mathcal {C}$ affect algebraic properties of representations of $\mathcal {C}$? We prove two general results. The first gives a criterion for representations of $\mathcal {C}$ to admit a theory of Gröbner bases, from which we obtain a criterion for noetherianity. The second gives a criterion for a general “rationality” result for Hilbert series of representations of $\mathcal {C}$, and connects to the theory of formal languages. Our work is motivated by recent work in the literature on representations of various specific categories. Our general criteria recover many of the results on these categories that had been proved by ad hoc means, and often yield cleaner proofs and stronger statements. For example, we give a new, more robust, proof that FI-modules (studied by Church, Ellenberg, and Farb), and certain generalizations, are noetherian; we prove the Lannes–Schwartz artinian conjecture from the study of generic representation theory of finite fields; we significantly improve the theory of $\Delta$-modules, introduced by Snowden in connection to syzygies of Segre embeddings; and we establish fundamental properties of twisted commutative algebras in positive characteristic.
DOI : 10.1090/jams/859

Sam, Steven 1, 2 ; Snowden, Andrew 3

1 Department of Mathematics, University of California, Berkeley, California 94720
2 Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
3 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
@article{10_1090_jams_859,
     author = {Sam, Steven and Snowden, Andrew},
     title = {Gr\~A{\textparagraph}bner methods for representations of combinatorial categories},
     journal = {Journal of the American Mathematical Society},
     pages = {159--203},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2017},
     doi = {10.1090/jams/859},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/859/}
}
TY  - JOUR
AU  - Sam, Steven
AU  - Snowden, Andrew
TI  - Gröbner methods for representations of combinatorial categories
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 159
EP  - 203
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/859/
DO  - 10.1090/jams/859
ID  - 10_1090_jams_859
ER  - 
%0 Journal Article
%A Sam, Steven
%A Snowden, Andrew
%T Gröbner methods for representations of combinatorial categories
%J Journal of the American Mathematical Society
%D 2017
%P 159-203
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/859/
%R 10.1090/jams/859
%F 10_1090_jams_859
Sam, Steven; Snowden, Andrew. Gröbner methods for representations of combinatorial categories. Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 159-203. doi: 10.1090/jams/859

[1] Barratt, M. G. Twisted Lie algebras 1978 9 15

[2] Bã³Na, Miklã³S Combinatorics of permutations 2012

[3] Chomsky, N., Schã¼Tzenberger, M. P. The algebraic theory of context-free languages 1963 118 161

[4] Church, Thomas, Ellenberg, Jordan S., Farb, Benson FI-modules and stability for representations of symmetric groups Duke Math. J. 2015 1833 1910

[5] Church, Thomas, Ellenberg, Jordan S., Farb, Benson, Nagpal, Rohit FI-modules over Noetherian rings Geom. Topol. 2014 2951 2984

[6] Church, Thomas, Farb, Benson Representation theory and homological stability Adv. Math. 2013 250 314

[7] Cohen, D. E. On the laws of a metabelian variety J. Algebra 1967 267 273

[8] Djament, Aurã©Lien Foncteurs en grassmanniennes, filtration de Krull et cohomologie des foncteurs Mém. Soc. Math. Fr. (N.S.) 2007

[9] Djament, Aurã©Lien Le foncteur 𝑉\mapsto𝔽₂[𝕍]^{⊗3} entre 𝔽₂-espaces vectoriels est noethérien Ann. Inst. Fourier (Grenoble) 2009 459 490

[10] A. Djament Des propriétés de finitude des foncteurs polynomiaux

[11] Djament, Aurã©Lien, Vespa, Christine Sur l’homologie des groupes orthogonaux et symplectiques à coefficients tordus Ann. Sci. Éc. Norm. Supér. (4) 2010 395 459

[12] Dotsenko, Vladimir, Khoroshkin, Anton Gröbner bases for operads Duke Math. J. 2010 363 396

[13] Dotsenko, Vladimir, Khoroshkin, Anton Shuffle algebras, homology, and consecutive pattern avoidance Algebra Number Theory 2013 673 700

[14] Dougherty, Randall Functors on the category of finite sets Trans. Amer. Math. Soc. 1992 859 886

[15] Draisma, Jan Noetherianity up to symmetry 2014 33 61

[16] Jan Draisma, Rob H. Eggermont Plücker varieties and higher secants of Sato’s Grassmannian

[17] Draisma, Jan, Kuttler, Jochen Bounded-rank tensors are defined in bounded degree Duke Math. J. 2014 35 63

[18] Eilenberg, Samuel, Mac Lane, Saunders On the groups 𝐻(Π,𝑛). II. Methods of computation Ann. of Math. (2) 1954 49 139

[19] Eisenbud, David Commutative algebra 1995

[20] Benson Farb

[21] Franjou, Vincent, Friedlander, Eric M., Scorichenko, Alexander, Suslin, Andrei General linear and functor cohomology over finite fields Ann. of Math. (2) 1999 663 728

[22] Franjou, Vincent, Lannes, Jean, Schwartz, Lionel Autour de la cohomologie de Mac Lane des corps finis Invent. Math. 1994 513 538

[23] Friedlander, Eric M., Suslin, Andrei Cohomology of finite group schemes over a field Invent. Math. 1997 209 270

[24] Gabriel, Pierre Des catégories abéliennes Bull. Soc. Math. France 1962 323 448

[25] Gan, Wee Liang, Li, Liping Noetherian property of infinite EI categories New York J. Math. 2015 369 382

[26] Scott Garrabrant, Igor Pak Pattern avoidance is not P-recursive

[27] Ginzburg, Victor, Schedler, Travis Differential operators and BV structures in noncommutative geometry Selecta Math. (N.S.) 2010 673 730

[28] Hashimoto, Mitsuyasu Determinantal ideals without minimal free resolutions Nagoya Math. J. 1990 203 216

[29] Higman, Graham Ordering by divisibility in abstract algebras Proc. London Math. Soc. (3) 1952 326 336

[30] Hillar, Christopher J., Martã­N Del Campo, Abraham Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals J. Symbolic Comput. 2013 314 334

[31] Hillar, Christopher J., Sullivant, Seth Finite Gröbner bases in infinite dimensional polynomial rings and applications Adv. Math. 2012 1 25

[32] Hopcroft, John E., Ullman, Jeffrey D. Introduction to automata theory, languages, and computation 1979

[33] Khoroshkin, Anton, Piontkovski, Dmitri On generating series of finitely presented operads J. Algebra 2015 377 429

[34] Krause, Henning The artinian conjecture (following Djament, Putman, Sam, and Snowden) 2015 104 111

[35] Kuhn, Nicholas J. Generic representations of the finite general linear groups and the Steenrod algebra. I Amer. J. Math. 1994 327 360

[36] Kuhn, Nicholas J. Generic representations of the finite general linear groups and the Steenrod algebra. II 𝐾-Theory 1994 395 428

[37] Kuhn, Nicholas J. Invariant subspaces of the ring of functions on a vector space over a finite field J. Algebra 1997 212 227

[38] Kuhn, Nicholas J. The generic representation theory of finite fields: a survey of basic structure 2000 193 212

[39] Kuhn, Nicholas J. Generic representation theory of finite fields in nondescribing characteristic Adv. Math. 2015 598 610

[40] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[41] Rohit Nagpal, Steven V Sam, Andrew Snowden Noetherianity of some degree two twisted commutative algebras

[42] Nash-Williams, C. St. J. A. On well-quasi-ordering finite trees Proc. Cambridge Philos. Soc. 1963 833 835

[43] Oeding, Luke, Raicu, Claudiu Tangential varieties of Segre-Veronese varieties Collect. Math. 2014 303 330

[44] Parã©, Robert Contravariant functors on finite sets and Stirling numbers Theory Appl. Categ. 1999 65 76

[45] Pirashvili, Teimuraz Dold-Kan type theorem for Γ-groups Math. Ann. 2000 277 298

[46] Pirashvili, Teimuraz Hodge decomposition for higher order Hochschild homology Ann. Sci. École Norm. Sup. (4) 2000 151 179

[47] Powell, Geoffrey M. L. The Artinian conjecture for 𝐼^{⊗2} J. Pure Appl. Algebra 1998 291 310

[48] Powell, Geoffrey M. L. The structure of indecomposable injectives in generic representation theory Trans. Amer. Math. Soc. 1998 4167 4193

[49] Powell, Geoffrey M. L. On Artinian objects in the category of functors between 𝐅₂-vector spaces 2000 213 228

[50] Andrew Putman, Steven V Sam Representation stability and finite linear groups

[51] Raicu, Claudiu Secant varieties of Segre-Veronese varieties Algebra Number Theory 2012 1817 1868

[52] Richter, Birgit Taylor towers for Γ-modules Ann. Inst. Fourier (Grenoble) 2001 995 1023

[53] Richter, Gã¼Nther Noetherian semigroup rings with several objects 1986 231 246

[54] Ronco, Marã­A Shuffle bialgebras Ann. Inst. Fourier (Grenoble) 2011 799 850

[55] Sam, Steven V., Snowden, Andrew GL-equivariant modules over polynomial rings in infinitely many variables Trans. Amer. Math. Soc. 2016 1097 1158

[56] Steven V Sam, Andrew Snowden Introduction to twisted commutative algebras

[57] Sam, Steven V., Snowden, Andrew Stability patterns in representation theory Forum Math. Sigma 2015

[58] Steven V Sam, Andrew Snowden Representations of categories of 𝐺-maps

[59] Schwartz, Lionel Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture 1994

[60] Schwede, Stefan On the homotopy groups of symmetric spectra Geom. Topol. 2008 1313 1344

[61] Snowden, Andrew Syzygies of Segre embeddings and Δ-modules Duke Math. J. 2013 225 277

[62] Stanley, Richard P. Enumerative combinatorics. Volume 1 2012

[63] Stanley, Richard P. Enumerative combinatorics. Vol. 2 1999

[64] Wilson, Jennifer C. H. 𝐹𝐼_{}𝒲-modules and stability criteria for representations of classical Weyl groups J. Algebra 2014 269 332

[65] John D. Wiltshire-Gordon Uniformly presented vector spaces

[66] Woodcock, Christopher F., Sharif, Habib On the transcendence of certain series J. Algebra 1989 364 369

Cité par Sources :