Gromov-Witten/Pairs correspondence for the quintic 3-fold
Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 389-449

Voir la notice de l'article provenant de la source American Mathematical Society

We use the Gromov-Witten/Pairs (GW/P) descendent correspondence for toric 3-folds and degeneration arguments to establish the GW/P correspondence for several compact Calabi-Yau (CY) 3-folds (including all CY complete intersections in products of projective spaces). A crucial aspect of the proof is the study of the GW/P correspondence for descendents in relative geometries. Projective bundles over surfaces relative to a section play a special role. The GW/P correspondence for Calabi-Yau complete intersections provides a structure result for the Gromov-Witten invariants in a fixed curve class. After a change of variables, the Gromov-Witten series is a rational function in the variable $-q=e^{iu}$ invariant under $q \leftrightarrow q^{-1}$.
DOI : 10.1090/jams/858

Pandharipande, R. 1 ; Pixton, A. 2, 3

1 Departement Mathematik, ETH Zürich, Zürich, Switzerland
2 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
3 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
@article{10_1090_jams_858,
     author = {Pandharipande, R. and Pixton, A.},
     title = {Gromov-Witten/Pairs correspondence for the quintic 3-fold},
     journal = {Journal of the American Mathematical Society},
     pages = {389--449},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2017},
     doi = {10.1090/jams/858},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/858/}
}
TY  - JOUR
AU  - Pandharipande, R.
AU  - Pixton, A.
TI  - Gromov-Witten/Pairs correspondence for the quintic 3-fold
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 389
EP  - 449
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/858/
DO  - 10.1090/jams/858
ID  - 10_1090_jams_858
ER  - 
%0 Journal Article
%A Pandharipande, R.
%A Pixton, A.
%T Gromov-Witten/Pairs correspondence for the quintic 3-fold
%J Journal of the American Mathematical Society
%D 2017
%P 389-449
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/858/
%R 10.1090/jams/858
%F 10_1090_jams_858
Pandharipande, R.; Pixton, A. Gromov-Witten/Pairs correspondence for the quintic 3-fold. Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 389-449. doi: 10.1090/jams/858

[1] Aganagic, Mina, Klemm, Albrecht, Mariã±O, Marcos, Vafa, Cumrun The topological vertex Comm. Math. Phys. 2005 425 478

[2] Behrend, K. Gromov-Witten invariants in algebraic geometry Invent. Math. 1997 601 617

[3] Behrend, K., Fantechi, B. The intrinsic normal cone Invent. Math. 1997 45 88

[4] Bridgeland, Tom Hall algebras and curve-counting invariants J. Amer. Math. Soc. 2011 969 998

[5] Bryan, J., Pandharipande, R. The local Gromov-Witten theory of curves J. Amer. Math. Soc. 2008

[6] Gopakumar, R., Vafa, C. M-theory and topological strings I and II

[7] Graber, T., Pandharipande, R. Localization of virtual classes Invent. Math. 1999 487 518

[8] Gross, Mark, Siebert, Bernd Logarithmic Gromov-Witten invariants J. Amer. Math. Soc. 2013 451 510

[9] Ionel, Eleny-Nicoleta, Parker, Thomas H. Relative Gromov-Witten invariants Ann. of Math. (2) 2003 45 96

[10] Ionel, E., Parker, T. The Gopakumar-Vafa formula for symplectic manifolds

[11] Klemm, A., Mariã±O, M. Counting BPS states on the Enriques Calabi-Yau

[12] Li, An-Min, Ruan, Yongbin Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds Invent. Math. 2001 151 218

[13] Li, Jun A degeneration formula of GW-invariants J. Differential Geom. 2002 199 293

[14] Li, Jun, Tian, Gang Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties J. Amer. Math. Soc. 1998 119 174

[15] Li, Jun, Wu, Baosen Good degeneration of Quot-schemes and coherent systems Comm. Anal. Geom. 2015 841 921

[16] Maulik, Davesh Gromov-Witten theory of 𝒜_{𝓃}-resolutions Geom. Topol. 2009 1729 1773

[17] Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R. Gromov-Witten theory and Donaldson-Thomas theory. I Compos. Math. 2006 1263 1285

[18] Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R. Gromov-Witten theory and Donaldson-Thomas theory. II Compos. Math. 2006 1286 1304

[19] Maulik, Davesh, Oblomkov, Alexei Quantum cohomology of the Hilbert scheme of points on 𝒜_{𝓃}-resolutions J. Amer. Math. Soc. 2009 1055 1091

[20] Maulik, Davesh, Oblomkov, Alexei Donaldson-Thomas theory of 𝒜_{𝓃}×𝒫¹ Compos. Math. 2009 1249 1276

[21] Maulik, D., Oblomkov, A., Okounkov, A., Pandharipande, R. Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds Invent. Math. 2011 435 479

[22] Maulik, D., Pandharipande, R. A topological view of Gromov-Witten theory Topology 2006 887 918

[23] Maulik, D., Pandharipande, R. New calculations in Gromov-Witten theory Pure Appl. Math. Q. 2008 469 500

[24] Maulik, D., Pandharipande, R., Thomas, R. P. Curves on 𝐾3 surfaces and modular forms J. Topol. 2010 937 996

[25] Oblomkov, A., Okounkov, A., Pandharipande, R.

[26] Okounkov, A., Pandharipande, R. Gromov-Witten theory, Hurwitz theory, and completed cycles Ann. of Math. (2) 2006 517 560

[27] Okounkov, A., Pandharipande, R. Virasoro constraints for target curves Invent. Math. 2006 47 108

[28] Okounkov, A., Pandharipande, R. Quantum cohomology of the Hilbert scheme of points in the plane Invent. Math. 2010 523 557

[29] Okounkov, A., Pandharipande, R. The local Donaldson-Thomas theory of curves Geom. Topol. 2010 1503 1567

[30] Pandharipande, R., Pixton, A. Descendents on local curves: rationality Compos. Math. 2013 81 124

[31] Pandharipande, Rahul, Pixton, Aaron Descendent theory for stable pairs on toric 3-folds J. Math. Soc. Japan 2013 1337 1372

[32] Pandharipande, R., Pixton, A. Descendents on local curves: stationary theory 2012 283 307

[33] Pandharipande, Rahul, Pixton, Aaron Gromov-Witten/pairs descendent correspondence for toric 3-folds Geom. Topol. 2014 2747 2821

[34] Pandharipande, R., Thomas, R. P. Curve counting via stable pairs in the derived category Invent. Math. 2009 407 447

[35] Pandharipande, Rahul, Thomas, Richard P. The 3-fold vertex via stable pairs Geom. Topol. 2009 1835 1876

[36] Pandharipande, R., Thomas, R. P. Stable pairs and BPS invariants J. Amer. Math. Soc. 2010 267 297

[37] Pandharipande, R., Thomas, R. P. The Katz-Klemm-Vafa conjecture for 𝐾3 surfaces

[38] Pandharipande, R., Thomas, R. P. 13/2 ways of counting curves 2014 282 333

[39] Setayesh, Iman Relative Hilbert scheme of points 2011 50

[40] Toda, Yukinobu Curve counting theories via stable objects I. DT/PT correspondence J. Amer. Math. Soc. 2010 1119 1157

Cité par Sources :