Weak mixing directions in non-arithmetic Veech surfaces
Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 1167-1208

Voir la notice de l'article provenant de la source American Mathematical Society

We show that the billiard in a regular polygon is weak mixing in almost every invariant surface, except in the trivial cases which give rise to lattices in the plane (triangle, square, and hexagon). More generally, we study the problem of prevalence of weak mixing for the directional flow in an arbitrary non-arithmetic Veech surface and show that the Hausdorff dimension of the set of non-weak mixing directions is not full. We also provide a necessary condition, verified, for instance, by the Veech surface corresponding to the billiard in the pentagon, for the set of non-weak mixing directions to have a positive Hausdorff dimension.
DOI : 10.1090/jams/856

Avila, Artur 1 ; Delecroix, Vincent 2, 3

1 CNRS UMR 7586, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France & IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil
2 CNRS UMR 7586, Instittut de Mathématiques de Jussieu-Paris Rive Gauche, Bâtiment Sophie Germain, 75205 Paris Cedex 13, France
3 LaBRI, UMR 5800, Bãtiment A30, 351, cours de la Libãration 33405 Talence cedex, France.
@article{10_1090_jams_856,
     author = {Avila, Artur and Delecroix, Vincent},
     title = {Weak mixing directions in non-arithmetic {Veech} surfaces},
     journal = {Journal of the American Mathematical Society},
     pages = {1167--1208},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2016},
     doi = {10.1090/jams/856},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/856/}
}
TY  - JOUR
AU  - Avila, Artur
AU  - Delecroix, Vincent
TI  - Weak mixing directions in non-arithmetic Veech surfaces
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 1167
EP  - 1208
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/856/
DO  - 10.1090/jams/856
ID  - 10_1090_jams_856
ER  - 
%0 Journal Article
%A Avila, Artur
%A Delecroix, Vincent
%T Weak mixing directions in non-arithmetic Veech surfaces
%J Journal of the American Mathematical Society
%D 2016
%P 1167-1208
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/856/
%R 10.1090/jams/856
%F 10_1090_jams_856
Avila, Artur; Delecroix, Vincent. Weak mixing directions in non-arithmetic Veech surfaces. Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 1167-1208. doi: 10.1090/jams/856

[1] Avila, Artur, Delecroix, Vincent Large deviations for algebraic 𝑆𝐿₂(ℝ)-invariant measures in moduli space

[2] Avila, Artur, Forni, Giovanni Weak mixing for interval exchange transformations and translation flows Ann. of Math. (2) 2007 637 664

[3] Avila, Artur, Forni, Giovanni Weak mixing in L shaped billiards

[4] Avila, Artur, Viana, Marcelo Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture Acta Math. 2007 1 56

[5] Beardon, Alan F. The geometry of discrete groups 1983

[6] Bouw, Irene I., Mã¶Ller, Martin Teichmüller curves, triangle groups, and Lyapunov exponents Ann. of Math. (2) 2010 139 185

[7] Bressaud, Xavier, Bufetov, Alexander I., Hubert, Pascal Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1 Proc. Lond. Math. Soc. (3) 2014 483 522

[8] Bressaud, Xavier, Durand, Fabien, Maass, Alejandro Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems J. London Math. Soc. (2) 2005 799 816

[9] Bressaud, Xavier, Durand, Fabien, Maass, Alejandro On the eigenvalues of finite rank Bratteli-Vershik dynamical systems Ergodic Theory Dynam. Systems 2010 639 664

[10] Calta, Kariane Veech surfaces and complete periodicity in genus two J. Amer. Math. Soc. 2004 871 908

[11] Chaika, Jon, Eskin, Alex Every flat surface is Birkhoff and Oseledets generic in almost every direction J. Mod. Dyn. 2015 1 23

[12] Calta, Kariane, Smillie, John Algebraically periodic translation surfaces J. Mod. Dyn. 2008 209 248

[13] Eskin, Alex, Matheus, Carlos A coding-free simplicity criterion for the Lyapunov exponents of Teichmüller curves Geom. Dedicata 2015 45 67

[14] Forni, Giovanni Deviation of ergodic averages for area-preserving flows on surfaces of higher genus Ann. of Math. (2) 2002 1 103

[15] Guenais, M., Parreau, F. Valeurs propres de transformations liées aux rotations irrationnelles et aux fonctions en escalier

[16] Gutkin, Eugene, Judge, Chris Affine mappings of translation surfaces: geometry and arithmetic Duke Math. J. 2000 191 213

[17] Hooper, W. Patrick Grid graphs and lattice surfaces Int. Math. Res. Not. IMRN 2013 2657 2698

[18] Hubert, Pascal, Marchese, Luca, Ulcigrai, Corinna Lagrange spectra in Teichmüller dynamics via renormalization Geom. Funct. Anal. 2015 180 255

[19] Hubert, Pascal, Schmidt, Thomas A. An introduction to Veech surfaces 2006 501 526

[20] Katok, Anatole Interval exchange transformations and some special flows are not mixing Israel J. Math. 1980 301 310

[21] Keane, Michael Interval exchange transformations Math. Z. 1975 25 31

[22] Kenyon, Richard, Smillie, John Billiards on rational-angled triangles Comment. Math. Helv. 2000 65 108

[23] Kerckhoff, Steven, Masur, Howard, Smillie, John Ergodicity of billiard flows and quadratic differentials Ann. of Math. (2) 1986 293 311

[24] Hubert, Pascal, Lanneau, Erwan Veech groups without parabolic elements Duke Math. J. 2006 335 346

[25] Lanneau, Erwan, Nguyen, Duc-Manh Teichmüller curves generated by Weierstrass Prym eigenforms in genus 3 and genus 4 J. Topol. 2014 475 522

[26] Masur, Howard Interval exchange transformations and measured foliations Ann. of Math. (2) 1982 169 200

[27] Masur, Howard Hausdorff dimension of the set of nonergodic foliations of a quadratic differential Duke Math. J. 1992 387 442

[28] Mcmullen, Curtis T. Billiards and Teichmüller curves on Hilbert modular surfaces J. Amer. Math. Soc. 2003 857 885

[29] Mcmullen, Curtis T. Prym varieties and Teichmüller curves Duke Math. J. 2006 569 590

[30] Mcmullen, Curtis T. Dynamics of 𝑆𝐿₂(ℝ) over moduli space in genus two Ann. of Math. (2) 2007 397 456

[31] Marmi, Stefano, Moussa, Pierre, Yoccoz, Jean-Cristophe The cohomological equation for Roth type interval exchange transformations J. Amer. Math. Soc. 2005

[32] Masur, Howard, Tabachnikov, Serge Rational billiards and flat structures 2002 1015 1089

[33] Mã¶Ller, Martin Variations of Hodge structures of a Teichmüller curve J. Amer. Math. Soc. 2006 327 344

[34] Stein, William A., Et Al. Sage Mathematics Software (Version 5.0)

[35] Smillie, John, Weiss, Barak Characterizations of lattice surfaces Invent. Math. 2010 535 557

[36] Veech, William A. Gauss measures for transformations on the space of interval exchange maps Ann. of Math. (2) 1982 201 242

[37] Veech, William A. The metric theory of interval exchange transformations. I. Generic spectral properties Amer. J. Math. 1984 1331 1359

[38] Veech, W. A. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards Invent. Math. 1989 553 583

[39] Ward, Clayton C. Calculation of Fuchsian groups associated to billiards in a rational triangle Ergodic Theory Dynam. Systems 1998 1019 1042

[40] Wright, Alex Schwarz triangle mappings and Teichmüller curves: the Veech-Ward-Bouw-Möller curves Geom. Funct. Anal. 2013 776 809

Cité par Sources :