Voir la notice de l'article provenant de la source American Mathematical Society
Avila, Artur 1 ; Delecroix, Vincent 2, 3
@article{10_1090_jams_856,
     author = {Avila, Artur and Delecroix, Vincent},
     title = {Weak mixing directions in non-arithmetic {Veech} surfaces},
     journal = {Journal of the American Mathematical Society},
     pages = {1167--1208},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2016},
     doi = {10.1090/jams/856},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/856/}
}
                      
                      
                    TY - JOUR AU - Avila, Artur AU - Delecroix, Vincent TI - Weak mixing directions in non-arithmetic Veech surfaces JO - Journal of the American Mathematical Society PY - 2016 SP - 1167 EP - 1208 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/856/ DO - 10.1090/jams/856 ID - 10_1090_jams_856 ER -
%0 Journal Article %A Avila, Artur %A Delecroix, Vincent %T Weak mixing directions in non-arithmetic Veech surfaces %J Journal of the American Mathematical Society %D 2016 %P 1167-1208 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/856/ %R 10.1090/jams/856 %F 10_1090_jams_856
Avila, Artur; Delecroix, Vincent. Weak mixing directions in non-arithmetic Veech surfaces. Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 1167-1208. doi: 10.1090/jams/856
[1] , Large deviations for algebraic ðð¿â(â)-invariant measures in moduli space
[2] , Weak mixing for interval exchange transformations and translation flows Ann. of Math. (2) 2007 637 664
[3] , Weak mixing in L shaped billiards
[4] , Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture Acta Math. 2007 1 56
[5] The geometry of discrete groups 1983
[6] , Teichmüller curves, triangle groups, and Lyapunov exponents Ann. of Math. (2) 2010 139 185
[7] , , Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1 Proc. Lond. Math. Soc. (3) 2014 483 522
[8] , , Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems J. London Math. Soc. (2) 2005 799 816
[9] , , On the eigenvalues of finite rank Bratteli-Vershik dynamical systems Ergodic Theory Dynam. Systems 2010 639 664
[10] Veech surfaces and complete periodicity in genus two J. Amer. Math. Soc. 2004 871 908
[11] , Every flat surface is Birkhoff and Oseledets generic in almost every direction J. Mod. Dyn. 2015 1 23
[12] , Algebraically periodic translation surfaces J. Mod. Dyn. 2008 209 248
[13] , A coding-free simplicity criterion for the Lyapunov exponents of Teichmüller curves Geom. Dedicata 2015 45 67
[14] Deviation of ergodic averages for area-preserving flows on surfaces of higher genus Ann. of Math. (2) 2002 1 103
[15] , Valeurs propres de transformations liées aux rotations irrationnelles et aux fonctions en escalier
[16] , Affine mappings of translation surfaces: geometry and arithmetic Duke Math. J. 2000 191 213
[17] Grid graphs and lattice surfaces Int. Math. Res. Not. IMRN 2013 2657 2698
[18] , , Lagrange spectra in Teichmüller dynamics via renormalization Geom. Funct. Anal. 2015 180 255
[19] , An introduction to Veech surfaces 2006 501 526
[20] Interval exchange transformations and some special flows are not mixing Israel J. Math. 1980 301 310
[21] Interval exchange transformations Math. Z. 1975 25 31
[22] , Billiards on rational-angled triangles Comment. Math. Helv. 2000 65 108
[23] , , Ergodicity of billiard flows and quadratic differentials Ann. of Math. (2) 1986 293 311
[24] , Veech groups without parabolic elements Duke Math. J. 2006 335 346
[25] , Teichmüller curves generated by Weierstrass Prym eigenforms in genus 3 and genus 4 J. Topol. 2014 475 522
[26] Interval exchange transformations and measured foliations Ann. of Math. (2) 1982 169 200
[27] Hausdorff dimension of the set of nonergodic foliations of a quadratic differential Duke Math. J. 1992 387 442
[28] Billiards and Teichmüller curves on Hilbert modular surfaces J. Amer. Math. Soc. 2003 857 885
[29] Prym varieties and Teichmüller curves Duke Math. J. 2006 569 590
[30] Dynamics of ðð¿â(â) over moduli space in genus two Ann. of Math. (2) 2007 397 456
[31] , , The cohomological equation for Roth type interval exchange transformations J. Amer. Math. Soc. 2005
[32] , Rational billiards and flat structures 2002 1015 1089
[33] Variations of Hodge structures of a Teichmüller curve J. Amer. Math. Soc. 2006 327 344
[34] Sage Mathematics Software (Version 5.0)
[35] , Characterizations of lattice surfaces Invent. Math. 2010 535 557
[36] Gauss measures for transformations on the space of interval exchange maps Ann. of Math. (2) 1982 201 242
[37] The metric theory of interval exchange transformations. I. Generic spectral properties Amer. J. Math. 1984 1331 1359
[38] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards Invent. Math. 1989 553 583
[39] Calculation of Fuchsian groups associated to billiards in a rational triangle Ergodic Theory Dynam. Systems 1998 1019 1042
[40] Schwarz triangle mappings and Teichmüller curves: the Veech-Ward-Bouw-Möller curves Geom. Funct. Anal. 2013 776 809
Cité par Sources :
