Voir la notice de l'article provenant de la source American Mathematical Society
Cai, Mingzhong 1 ; Ganchev, Hristo 2 ; Lempp, Steffen 3 ; Miller, Joseph 3 ; Soskova, Mariya 2
@article{10_1090_jams_848,
author = {Cai, Mingzhong and Ganchev, Hristo and Lempp, Steffen and Miller, Joseph and Soskova, Mariya},
title = {Defining totality in the enumeration degrees},
journal = {Journal of the American Mathematical Society},
pages = {1051--1067},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2016},
doi = {10.1090/jams/848},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/848/}
}
TY - JOUR AU - Cai, Mingzhong AU - Ganchev, Hristo AU - Lempp, Steffen AU - Miller, Joseph AU - Soskova, Mariya TI - Defining totality in the enumeration degrees JO - Journal of the American Mathematical Society PY - 2016 SP - 1051 EP - 1067 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/848/ DO - 10.1090/jams/848 ID - 10_1090_jams_848 ER -
%0 Journal Article %A Cai, Mingzhong %A Ganchev, Hristo %A Lempp, Steffen %A Miller, Joseph %A Soskova, Mariya %T Defining totality in the enumeration degrees %J Journal of the American Mathematical Society %D 2016 %P 1051-1067 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/848/ %R 10.1090/jams/848 %F 10_1090_jams_848
Cai, Mingzhong; Ganchev, Hristo; Lempp, Steffen; Miller, Joseph; Soskova, Mariya. Defining totality in the enumeration degrees. Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 1051-1067. doi: 10.1090/jams/848
[1] , , Splitting properties of total enumeration degrees Algebra Logika 2003
[2] Array nonrecursiveness and relative recursive enumerability J. Symbolic Logic 2012 21 32
[3] , Domination, forcing, array nonrecursiveness and relative recursive enumerability J. Symbolic Logic 2012 33 48
[4] , Low level nondefinability results: domination and recursive enumeration J. Symbolic Logic 2013 1005 1024
[5] , , Every set has a least jump enumeration J. London Math. Soc. (2) 2000 641 649
[6] Partial degrees and the density problem. II. The enumeration degrees of the 룉 sets are dense J. Symbolic Logic 1984 503 513
[7] A criterion for completeness of degrees of unsolvability J. Symbolic Logic 1957 159 160
[8] , Reducibility and completeness for sets of integers Z. Math. Logik Grundlagen Math. 1959 117 125
[9] , Cupping and definability in the local structure of the enumeration degrees J. Symbolic Logic 2012 133 158
[10] , Definability via Kalimullin pairs in the structure of the enumeration degrees Trans. Amer. Math. Soc. 2015 4873 4893
[11] Semirecursive sets and positive reducibility Trans. Amer. Math. Soc. 1968 420 436
[12] Definability of the jump operator in the enumeration degrees J. Math. Log. 2003 257 267
[13] Introduction to metamathematics 1952
[14] Jumps of quasiminimal enumeration degrees J. Symbolic Logic 1985 839 848
[15] Degrees of unsolvability of continuous functions J. Symbolic Logic 2004 555 584
[16] Degrees of structures J. Symbolic Logic 1981 723 731
[17] Some problems of definability in recursive function theory 1967 183 201
[18] Theory of recursive functions and effective computability 1967
[19] The semi-lattice of ð-degrees 1978
[20] Lamba calculus and recursion theory 1975 154 193
[21] Arithmetical reducibilities. I Z. Math. Logik Grundlagen Math. 1971 335 350
[22] , Definability in degree structures 2005
[23] A jump inversion theorem for the enumeration jump Arch. Math. Logic 2000 417 437
[24] Degree spectra and co-spectra of structures Annuaire Univ. Sofia Fac. Math. Inform. 2004 45 68
[25] A note on ð-jump inversion of degree spectra of structures 2013 365 370
[26] , The jump operator on the ð-enumeration degrees Ann. Pure Appl. Logic 2009 289 301
[27] The automorphism group of the enumeration degrees
[28] Algebraisch abgeschlossene Gruppen 1980 449 576
Cité par Sources :