Sums of squares and varieties of minimal degree
Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 893-913 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Let $X \subseteq \mathbb {P}^n$ be a real nondegenerate subvariety such that the set $X(\mathbb {R})$ of real points is Zariski dense. We prove that every real quadratic form that is nonnegative on $X(\mathbb {R})$ is a sum of squares of linear forms if and only if $X$ is a variety of minimal degree. This substantially extends Hilbert’s celebrated characterization of equality between nonnegative forms and sums of squares. We obtain a complete list for the cases of equality and also a classification of the lattice polytopes $Q$ for which every nonnegative Laurent polynomial with support contained in $2Q$ is a sum of squares.
DOI : 10.1090/jams/847

Blekherman, Grigoriy 1 ; Smith, Gregory 2 ; Velasco, Mauricio 3

1 School of Mathematics, Georgia Tech, 686 Cherry Street, Atlanta, Georgia, 30332
2 Department of Mathematics & Statistics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
3 Departamento de Matemáticas, Universidad de los Andes, Carrera 1 No. 18a 10, Edificio H, Primer Piso, 111711 Bogotá, Colombia
@article{10_1090_jams_847,
     author = {Blekherman, Grigoriy and Smith, Gregory and Velasco, Mauricio},
     title = {Sums of squares and varieties of minimal degree},
     journal = {Journal of the American Mathematical Society},
     pages = {893--913},
     year = {2016},
     volume = {29},
     number = {3},
     doi = {10.1090/jams/847},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/847/}
}
TY  - JOUR
AU  - Blekherman, Grigoriy
AU  - Smith, Gregory
AU  - Velasco, Mauricio
TI  - Sums of squares and varieties of minimal degree
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 893
EP  - 913
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/847/
DO  - 10.1090/jams/847
ID  - 10_1090_jams_847
ER  - 
%0 Journal Article
%A Blekherman, Grigoriy
%A Smith, Gregory
%A Velasco, Mauricio
%T Sums of squares and varieties of minimal degree
%J Journal of the American Mathematical Society
%D 2016
%P 893-913
%V 29
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/847/
%R 10.1090/jams/847
%F 10_1090_jams_847
Blekherman, Grigoriy; Smith, Gregory; Velasco, Mauricio. Sums of squares and varieties of minimal degree. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 893-913. doi: 10.1090/jams/847

[1] Batyrev, Victor, Nill, Benjamin Multiples of lattice polytopes without interior lattice points Mosc. Math. J. 2007

[2] Beck, Matthias, Robins, Sinai Computing the continuous discretely 2007

[3] Becker, Eberhard Valuations and real places in the theory of formally real fields 1982 1 40

[4] Blekherman, Grigoriy Nonnegative polynomials and sums of squares J. Amer. Math. Soc. 2012 617 635

[5] Semidefinite optimization and convex algebraic geometry 2013

[6] Blekherman, Grigoriy, Iliman, Sadik, Kubitzker, Martina Dimensional differences between faces of the cones of nonnegative polynomials and sums of squares Int. Math. Res. Not. IMRN

[7] Brodmann, Markus, Schenzel, Peter Arithmetic properties of projective varieties of almost minimal degree J. Algebraic Geom. 2007 347 400

[8] Cox, David A., Little, John B., Schenck, Henry K. Toric varieties 2011

[9] Choi, Man Duen, Lam, Tsit Yuen, Reznick, Bruce Real zeros of positive semidefinite forms. I Math. Z. 1980 1 26

[10] Eisenbud, David, Goto, Shiro Linear free resolutions and minimal multiplicity J. Algebra 1984 89 133

[11] Eisenbud, David, Harris, Joe On varieties of minimal degree (a centennial account) 1987 3 13

[12] Gubeladze, Joseph The isomorphism problem for commutative monoid rings J. Pure Appl. Algebra 1998 35 65

[13] Harris, Joe Algebraic geometry 1992

[14] Higashitani, Akihiro Counterexamples of the conjecture on roots of Ehrhart polynomials Discrete Comput. Geom. 2012 618 623

[15] Hilbert, David Ueber die Darstellung definiter Formen als Summe von Formenquadraten Math. Ann. 1888 342 350

[16] Jouanolou, Jean-Pierre Théorèmes de Bertini et applications 1983

[17] Lasserre, Jean Bernard Moments, positive polynomials and their applications 2010

[18] Laurent, Monique Sums of squares, moment matrices and optimization over polynomials 2009 157 270

[19] L′Vovsky, S. On inflection points, monomial curves, and hypersurfaces containing projective curves Math. Ann. 1996 719 735

[20] Ramana, Motakuri, Goldman, A. J. Some geometric results in semidefinite programming J. Global Optim. 1995 33 50

[21] Reznick, Bruce Some concrete aspects of Hilbert’s 17th Problem 2000 251 272

[22] Scheiderer, Claus A Positivstellensatz for projective real varieties Manuscripta Math. 2012 73 88

[23] Stanley, Richard P. A monotonicity property of ℎ-vectors and ℎ*-vectors European J. Combin. 1993 251 258

[24] Stapledon, A. Inequalities and Ehrhart 𝛿-vectors Trans. Amer. Math. Soc. 2009 5615 5626

[25] Zak, F. L. Projective invariants of quadratic embeddings Math. Ann. 1999 507 545

Cité par Sources :