Voir la notice de l'article provenant de la source American Mathematical Society
Faou, Erwan 1 ; Germain, Pierre 2 ; Hani, Zaher 3
@article{10_1090_jams_845,
author = {Faou, Erwan and Germain, Pierre and Hani, Zaher},
title = {The weakly nonlinear large-box limit of the {2D} cubic nonlinear {Schr\~A{\textparagraph}dinger} equation},
journal = {Journal of the American Mathematical Society},
pages = {915--982},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2016},
doi = {10.1090/jams/845},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/845/}
}
TY - JOUR AU - Faou, Erwan AU - Germain, Pierre AU - Hani, Zaher TI - The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation JO - Journal of the American Mathematical Society PY - 2016 SP - 915 EP - 982 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/845/ DO - 10.1090/jams/845 ID - 10_1090_jams_845 ER -
%0 Journal Article %A Faou, Erwan %A Germain, Pierre %A Hani, Zaher %T The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation %J Journal of the American Mathematical Society %D 2016 %P 915-982 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/845/ %R 10.1090/jams/845 %F 10_1090_jams_845
Faou, Erwan; Germain, Pierre; Hani, Zaher. The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation. Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 915-982. doi: 10.1090/jams/845
[1] Mathematical methods of classical mechanics 1989
[2] , , , Heat-flow monotonicity of Strichartz norms Anal. PDE 2009 147 158
[3] , , A non-linear generalisation of the Loomis-Whitney inequality and applications Math. Res. Lett. 2005 443 457
[4] , , , The Brascamp-Lieb inequalities: finiteness, structure and extremals Geom. Funct. Anal. 2008 1343 1415
[5] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations Geom. Funct. Anal. 1993 107 156
[6] Invariant measures for the 2D-defocusing nonlinear Schrödinger equation Comm. Math. Phys. 1996 421 445
[7] Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations Ann. of Math. (2) 1998 363 439
[8] On Strichartzâs inequalities and the nonlinear Schrödinger equation on irrational tori 2007 1 20
[9] , Best constants in Youngâs inequality, its converse, and its generalization to more than three functions Advances in Math. 1976 151 173
[10] , , , Dispersive wave turbulence in one dimension Phys. D 2001 551 572
[11] , , A sharp analog of Youngâs inequality on ð^{ð} and related entropy inequalities J. Geom. Anal. 2004 487 520
[12] , Energy cascades for NLS on the torus Discrete Contin. Dyn. Syst. 2012 2063 2077
[13] , The Cauchy problem for the critical nonlinear Schrödinger equation in ð»^{ð } Nonlinear Anal. 1990 807 836
[14] Semilinear Schrödinger equations 2003
[15] , , , Compensated compactness and Hardy spaces J. Math. Pures Appl. (9) 1993 247 286
[16] , , , , Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation Invent. Math. 2010 39 113
[17] , , Discreteness and quasiresonances in weak turbulence of capillary waves Phys. Rev. E 2001 046306
[18] , , Gravity wave turbulence in a laboratory flume Phys. Rev. Lett. 2007 014501
[19] Global well-posedness and scattering for the defocusing, ð¿Â²-critical nonlinear Schrödinger equation when ðâ¥3 J. Amer. Math. Soc. 2012 429 463
[20] Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state
[21] , KAM for the nonlinear Schrödinger equation Ann. of Math. (2) 2010 371 435
[22] , , Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus Comm. Partial Differential Equations 2013 1123 1140
[23] Maximizers for the Strichartz inequality J. Eur. Math. Soc. (JEMS) 2007 739 774
[24] , , An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation Adv. Math. 2011 5361 5402
[25] , The cubic SzegÅ equation Ann. Sci. Ãc. Norm. Supér. (4) 2010 761 810
[26] , Invariant tori for the cubic Szegö equation Invent. Math. 2012 707 754
[27] , Effective integrable dynamics for a certain nonlinear wave equation Anal. PDE 2012 1139 1155
[28] , , On the continuous resonant equation for NLS. I. Deterministic analysis
[29] , , On the continuous resonant equation for NLS. II. Statistical study
[30] , Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation J. Eur. Math. Soc. (JEMS) 2015 71 149
[31] Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations Arch. Ration. Mech. Anal. 2014 929 964
[32] , On scattering for the quintic defocusing nonlinear Schrödinger equation on âÃð² Comm. Pure Appl. Math. 2014 1466 1542
[33] , Asymptotic behavior of the nonlinear Schrödinger equation with harmonic trapping
[34] , An introduction to the theory of numbers 2008
[35] On the non-linear energy transfer in a gravity-wave spectrum. I. General theory J. Fluid Mech. 1962 481 500
[36] On the non-linear energy transfer in a gravity wave spectrum. II. Conservation theorems J. Fluid Mech. 1963 273 281
[37] , On sharp Strichartz inequalities in low dimensions Int. Math. Res. Not. 2006
[38] Ãber die Gitterpunkte auf konvexen Kurven Math. Z. 1926 500 518
[39] Wave resonances in systems with discrete spectra 1998 95 129
[40] Exact and quasiresonances in discrete water wave turbulence Phys. Rev. Lett. 2007 214502
[41] , , Resonant interactions of nonlinear water waves in a finite basin Phys. Rev. E (3) 2008
[42] Discrete wave turbulence Europhys. Lett. 2009 44001
[43] Nonlinear resonance analysis 2011
[44] , , The cubic nonlinear Schrödinger equation in two dimensions with radial data J. Eur. Math. Soc. (JEMS) 2009 1203 1258
[45] Remark on the periodic mass critical nonlinear Schrödinger equation Proc. Amer. Math. Soc. 2014 2649 2660
[46] Gaussian kernels have only Gaussian maximizers Invent. Math. 1990 179 208
[47] , Weakly nonlinear Schrödinger equation with random initial data Invent. Math. 2011 79 188
[48] , Discrete and mesoscopic regimes of finite-size wave turbulence Phys. Rev. E 2010 056322
[49] , , A one-dimensional model for dispersive wave turbulence J. Nonlinear Sci. 1997 9 44
[50] , Compactness at blow-up time for ð¿Â² solutions of the critical nonlinear Schrödinger equation in 2D Internat. Math. Res. Notices 1998 399 425
[51] Compacité par compensation Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1978 489 507
[52] Wave turbulence 2011
[53] Sandpile behaviour in discrete water-wave turbulence J. Stat. Mech. Theory Exp. 2006
[54] The kinetic theory of thermal conduction in crystals Ann. Phys. 1929
[55] Traveling waves for the cubic SzegÅ equation on the real line Anal. PDE 2011 379 404
[56] Explicit formula for the solution of the Szegö equation on the real line and applications Discrete Contin. Dyn. Syst. 2011 607 649
[57] , A KAM algorithm for the resonant non-linear Schrödinger equation Adv. Math. 2015 399 470
[58] The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics J. Stat. Phys. 2006 1041 1104
[59] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations Duke Math. J. 1977 705 714
[60] Nonlinear dispersive equations 2006
[61] Poincaréâs legacies, pages from year two of a mathematical blog. Part I 2009
[62] , Effects of discretization of the spectrum in water-wave turbulence Fluid Dynam. Res. 2004 199 216
[63] Compensated compactness and applications to partial differential equations 1979 136 212
[64] A restriction theorem for the Fourier transform Bull. Amer. Math. Soc. 1975 477 478
[65] , Energy spectrum for the stochastic oscillations of a fluid surface Kohl. Acad. Nauk SSSR 1966
[66] , Weak turbulence of capillary waves J. Applied Mech. Tech. Phys. 1967
[67] , , Kolmogorov Spectra of Turbulence 1. Wave Turbulence 1992
[68] , , One-dimensional wave turbulence Phys. Rep. 2004 1 65
[69] , , Mesoscopic wave turbulence JETP Lett. 2005
Cité par Sources :