The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation
Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 915-982

Voir la notice de l'article provenant de la source American Mathematical Society

We consider the cubic nonlinear Schrödinger (NLS) equation set on a two-dimensional box of size $L$ with periodic boundary conditions. By taking the large-box limit $L \to \infty$ in the weakly nonlinear regime (characterized by smallness in the critical space), we derive a new equation set on $\mathbb {R}^2$ that approximates the dynamics of the frequency modes. The large-box limit and the weak nonlinearity limit are also performed in weak (or wave) turbulence theory, to which this work is related. This nonlinear equation turns out to be Hamiltonian and enjoys interesting symmetries, such as its invariance under the Fourier transform, as well as several families of explicit solutions. A large part of this work is devoted to a rigorous approximation result that allows one to project the long-time dynamics of the limit equation into that of the cubic NLS equation on a box of finite size.
DOI : 10.1090/jams/845

Faou, Erwan 1 ; Germain, Pierre 2 ; Hani, Zaher 3

1 INRIA & ENS Cachan Bretagne, Campus de Ker Lann, Avenue Robert Schumann, 35170 Bruz, France
2 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012-1185
3 School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
@article{10_1090_jams_845,
     author = {Faou, Erwan and Germain, Pierre and Hani, Zaher},
     title = {The weakly nonlinear large-box limit of the {2D} cubic nonlinear {Schr\~A{\textparagraph}dinger} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {915--982},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2016},
     doi = {10.1090/jams/845},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/845/}
}
TY  - JOUR
AU  - Faou, Erwan
AU  - Germain, Pierre
AU  - Hani, Zaher
TI  - The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 915
EP  - 982
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/845/
DO  - 10.1090/jams/845
ID  - 10_1090_jams_845
ER  - 
%0 Journal Article
%A Faou, Erwan
%A Germain, Pierre
%A Hani, Zaher
%T The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation
%J Journal of the American Mathematical Society
%D 2016
%P 915-982
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/845/
%R 10.1090/jams/845
%F 10_1090_jams_845
Faou, Erwan; Germain, Pierre; Hani, Zaher. The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation. Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 915-982. doi: 10.1090/jams/845

[1] Arnol′D, V. I. Mathematical methods of classical mechanics 1989

[2] Bennett, Jonathan, Bez, Neal, Carbery, Anthony, Hundertmark, Dirk Heat-flow monotonicity of Strichartz norms Anal. PDE 2009 147 158

[3] Bennett, Jonathan, Carbery, Anthony, Wright, James A non-linear generalisation of the Loomis-Whitney inequality and applications Math. Res. Lett. 2005 443 457

[4] Bennett, Jonathan, Carbery, Anthony, Christ, Michael, Tao, Terence The Brascamp-Lieb inequalities: finiteness, structure and extremals Geom. Funct. Anal. 2008 1343 1415

[5] Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations Geom. Funct. Anal. 1993 107 156

[6] Bourgain, Jean Invariant measures for the 2D-defocusing nonlinear Schrödinger equation Comm. Math. Phys. 1996 421 445

[7] Bourgain, J. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations Ann. of Math. (2) 1998 363 439

[8] Bourgain, J. On Strichartz’s inequalities and the nonlinear Schrödinger equation on irrational tori 2007 1 20

[9] Brascamp, Herm Jan, Lieb, Elliott H. Best constants in Young’s inequality, its converse, and its generalization to more than three functions Advances in Math. 1976 151 173

[10] Cai, David, Majda, Andrew J., Mclaughlin, David W., Tabak, Esteban G. Dispersive wave turbulence in one dimension Phys. D 2001 551 572

[11] Carlen, E. A., Lieb, E. H., Loss, M. A sharp analog of Young’s inequality on 𝑆^{𝑁} and related entropy inequalities J. Geom. Anal. 2004 487 520

[12] Carles, Rã©Mi, Faou, Erwan Energy cascades for NLS on the torus Discrete Contin. Dyn. Syst. 2012 2063 2077

[13] Cazenave, Thierry, Weissler, Fred B. The Cauchy problem for the critical nonlinear Schrödinger equation in 𝐻^{𝑠} Nonlinear Anal. 1990 807 836

[14] Cazenave, Thierry Semilinear Schrödinger equations 2003

[15] Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S. Compensated compactness and Hardy spaces J. Math. Pures Appl. (9) 1993 247 286

[16] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T. Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation Invent. Math. 2010 39 113

[17] Connaughton, C., Nazarenko, S., Pushkarev, A. Discreteness and quasiresonances in weak turbulence of capillary waves Phys. Rev. E 2001 046306

[18] Denissenko, P., Lukaschuk, S., Nazarenko, S. Gravity wave turbulence in a laboratory flume Phys. Rev. Lett. 2007 014501

[19] Dodson, Benjamin Global well-posedness and scattering for the defocusing, 𝐿²-critical nonlinear Schrödinger equation when 𝑑≥3 J. Amer. Math. Soc. 2012 429 463

[20] Dodson, B. Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state

[21] Eliasson, L. Hakan, Kuksin, Sergei B. KAM for the nonlinear Schrödinger equation Ann. of Math. (2) 2010 371 435

[22] Faou, Erwan, Gauckler, Ludwig, Lubich, Christian Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus Comm. Partial Differential Equations 2013 1123 1140

[23] Foschi, Damiano Maximizers for the Strichartz inequality J. Eur. Math. Soc. (JEMS) 2007 739 774

[24] Geng, Jiansheng, Xu, Xindong, You, Jiangong An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation Adv. Math. 2011 5361 5402

[25] Gã©Rard, Patrick, Grellier, Sandrine The cubic Szegő equation Ann. Sci. Éc. Norm. Supér. (4) 2010 761 810

[26] Gã©Rard, Patrick, Grellier, Sandrine Invariant tori for the cubic Szegö equation Invent. Math. 2012 707 754

[27] Gã©Rard, Patrick, Grellier, Sandrine Effective integrable dynamics for a certain nonlinear wave equation Anal. PDE 2012 1139 1155

[28] Germain, P., Hani, Z., Thomann, L. On the continuous resonant equation for NLS. I. Deterministic analysis

[29] Germain, P., Hani, Z., Thomann, L. On the continuous resonant equation for NLS. II. Statistical study

[30] Guardia, M., Kaloshin, V. Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation J. Eur. Math. Soc. (JEMS) 2015 71 149

[31] Hani, Zaher Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations Arch. Ration. Mech. Anal. 2014 929 964

[32] Hani, Zaher, Pausader, Benoit On scattering for the quintic defocusing nonlinear Schrödinger equation on ℝ×𝕋² Comm. Pure Appl. Math. 2014 1466 1542

[33] Hani, Z., Thomann, L. Asymptotic behavior of the nonlinear Schrödinger equation with harmonic trapping

[34] Hardy, G. H., Wright, E. M. An introduction to the theory of numbers 2008

[35] Hasselmann, K. On the non-linear energy transfer in a gravity-wave spectrum. I. General theory J. Fluid Mech. 1962 481 500

[36] Hasselmann, K. On the non-linear energy transfer in a gravity wave spectrum. II. Conservation theorems J. Fluid Mech. 1963 273 281

[37] Hundertmark, Dirk, Zharnitsky, Vadim On sharp Strichartz inequalities in low dimensions Int. Math. Res. Not. 2006

[38] Jarnã­K, Vojtä›Ch Über die Gitterpunkte auf konvexen Kurven Math. Z. 1926 500 518

[39] Kartashova, E. Wave resonances in systems with discrete spectra 1998 95 129

[40] Kartashova, E. Exact and quasiresonances in discrete water wave turbulence Phys. Rev. Lett. 2007 214502

[41] Kartashova, Elena, Nazarenko, Sergey, Rudenko, Oleksii Resonant interactions of nonlinear water waves in a finite basin Phys. Rev. E (3) 2008

[42] Kartashova, E. Discrete wave turbulence Europhys. Lett. 2009 44001

[43] Kartashova, Elena Nonlinear resonance analysis 2011

[44] Killip, Rowan, Tao, Terence, Visan, Monica The cubic nonlinear Schrödinger equation in two dimensions with radial data J. Eur. Math. Soc. (JEMS) 2009 1203 1258

[45] Kishimoto, Nobu Remark on the periodic mass critical nonlinear Schrödinger equation Proc. Amer. Math. Soc. 2014 2649 2660

[46] Lieb, Elliott H. Gaussian kernels have only Gaussian maximizers Invent. Math. 1990 179 208

[47] Lukkarinen, Jani, Spohn, Herbert Weakly nonlinear Schrödinger equation with random initial data Invent. Math. 2011 79 188

[48] L’Vov, V. S., Nazarenko, S. Discrete and mesoscopic regimes of finite-size wave turbulence Phys. Rev. E 2010 056322

[49] Majda, A. J., Mclaughlin, D. W., Tabak, E. G. A one-dimensional model for dispersive wave turbulence J. Nonlinear Sci. 1997 9 44

[50] Merle, F., Vega, L. Compactness at blow-up time for 𝐿² solutions of the critical nonlinear Schrödinger equation in 2D Internat. Math. Res. Notices 1998 399 425

[51] Murat, Franã§Ois Compacité par compensation Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1978 489 507

[52] Nazarenko, Sergey Wave turbulence 2011

[53] Nazarenko, S. Sandpile behaviour in discrete water-wave turbulence J. Stat. Mech. Theory Exp. 2006

[54] Peierls, R. The kinetic theory of thermal conduction in crystals Ann. Phys. 1929

[55] Pocovnicu, Oana Traveling waves for the cubic Szegő equation on the real line Anal. PDE 2011 379 404

[56] Pocovnicu, Oana Explicit formula for the solution of the Szegö equation on the real line and applications Discrete Contin. Dyn. Syst. 2011 607 649

[57] Procesi, C., Procesi, M. A KAM algorithm for the resonant non-linear Schrödinger equation Adv. Math. 2015 399 470

[58] Spohn, Herbert The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics J. Stat. Phys. 2006 1041 1104

[59] Strichartz, Robert S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations Duke Math. J. 1977 705 714

[60] Tao, Terence Nonlinear dispersive equations 2006

[61] Tao, Terence Poincaré’s legacies, pages from year two of a mathematical blog. Part I 2009

[62] Tanaka, Mitsuhiro, Yokoyama, Naoto Effects of discretization of the spectrum in water-wave turbulence Fluid Dynam. Res. 2004 199 216

[63] Tartar, L. Compensated compactness and applications to partial differential equations 1979 136 212

[64] Tomas, Peter A. A restriction theorem for the Fourier transform Bull. Amer. Math. Soc. 1975 477 478

[65] Zakharov, V. E., Filonenko, N. N. Energy spectrum for the stochastic oscillations of a fluid surface Kohl. Acad. Nauk SSSR 1966

[66] Zakharov, V. E., Filonenko, N. N. Weak turbulence of capillary waves J. Applied Mech. Tech. Phys. 1967

[67] Zakharov, V. E., L’Vov, V., Falkovich, G. Kolmogorov Spectra of Turbulence 1. Wave Turbulence 1992

[68] Zakharov, Vladimir, Dias, Frã©Dã©Ric, Pushkarev, Andrei One-dimensional wave turbulence Phys. Rep. 2004 1 65

[69] Zakharov, V. E., Korotkevich, A. C., Pushkarev, A. N. Mesoscopic wave turbulence JETP Lett. 2005

Cité par Sources :