Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_840,
     author = {Totaro, Burt},
     title = {Hypersurfaces that are not stably rational},
     journal = {Journal of the American Mathematical Society},
     pages = {883--891},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2016},
     doi = {10.1090/jams/840},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/840/}
}
                      
                      
                    Totaro, Burt. Hypersurfaces that are not stably rational. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 883-891. doi: 10.1090/jams/840
[1] A very general sextic double solid is not stably rational
[2] A very general quartic double fourfold or fivefold is not stably rational
[3] Ãléments de mathématique. Algèbre commutative. Chapitres 8 et 9 2006
[4] , The intermediate Jacobian of the cubic threefold Ann. of Math. (2) 1972 281 356
[5] , Lâéquivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques Compositio Math. 1979 301 332
[6] , Hypersurfaces quartiques de dimension 3: non rationalité stable
[7] , Rationality in families of threefolds Rend. Circ. Mat. Palermo (2) 2013 127 135
[8] Intersection theory 1998
[9] Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique Mém. Soc. Math. France (N.S.) 1985 87
[10] , On Shokurovâs rational connectedness conjecture Duke Math. J. 2007 119 136
[11] , Three-dimensional quartics and counterexamples to the Lüroth problem Mat. Sb. (N.S.) 1971 140 166
[12] Nonrational hypersurfaces J. Amer. Math. Soc. 1995 241 249
[13] Rational curves on algebraic varieties 1996
[14] Nonrational covers of ð¶ð^{ð}Ãð¶ðâ¿ 2000 51 71
[15] Singularities of the minimal model program 2013
[16] , , Rational and nearly rational varieties 2004
[17] Unramified elements in cycle modules J. Lond. Math. Soc. (2) 2008 51 64
[18] On a generalization of complete intersections J. Math. Kyoto Univ. 1975 619 646
[19] Birationally rigid varieties 2013
[20] Local fields 1979
[21] The motive of a classifying space
[22] Chow rings, decomposition of the diagonal, and the topology of families 2014
[23] Unirational varieties with no universal codimension 2 cycle Invent. Math., 2015
Cité par Sources :
