Voir la notice de l'article provenant de la source American Mathematical Society
Gan, Wee Teck 1 ; Takeda, Shuichiro 2
@article{10_1090_jams_839,
     author = {Gan, Wee Teck and Takeda, Shuichiro},
     title = {A proof of the {Howe} duality conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {473--493},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2016},
     doi = {10.1090/jams/839},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/839/}
}
                      
                      
                    TY - JOUR AU - Gan, Wee Teck AU - Takeda, Shuichiro TI - A proof of the Howe duality conjecture JO - Journal of the American Mathematical Society PY - 2016 SP - 473 EP - 493 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/839/ DO - 10.1090/jams/839 ID - 10_1090_jams_839 ER -
Gan, Wee Teck; Takeda, Shuichiro. A proof of the Howe duality conjecture. Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 473-493. doi: 10.1090/jams/839
[1] , Formal degrees and local theta correspondence Invent. Math. 2014 509 672
[2] , Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence Compos. Math. 2012 1655 1694
[3] ð-series and invariant theory 1979 275 285
[4] Transcending classical invariant theory J. Amer. Math. Soc. 1989 535 552
[5] Inducirane reprezentacije hermitskih kvaternionskih grupa
[6] , Parabolic induction and Jacquet functors for metaplectic groups J. Algebra 2010 241 260
[7] On the local theta-correspondence Invent. Math. 1986 229 255
[8] Splitting metaplectic covers of dual reductive pairs Israel J. Math. 1994 361 401
[9] , On first occurrence in the local theta correspondence 2005 273 308
[10] , , The multiplicity one conjecture for local theta correspondences Invent. Math. 2011 117 124
[11] , , MVW-extensions of quaternionic classical groups Math. Z. 2014 81 89
[12] Correspondance de Howe explicite: paires duales de type II Ann. Sci. Ãc. Norm. Supér. (4) 2008 717 741
[13] , , Correspondances de Howe sur un corps ð-adique 1987
[14] Howe correspondence for discrete series representations J. Reine Angew. Math. 2004 99 150
[15] On the structure of the full lift for the Howe correspondence of (ðð(ð),ð(ð)) for rank-one reducibilities Canad. Math. Bull. 2006 578 591
[16] On the structure of theta lifts of discrete series for dual pairs (ðð(ð),ð(ð)) Israel J. Math. 2008 87 124
[17] Theta lifts of tempered representations for dual pairs (ðð_{2ð},ð(ð)) Canad. J. Math. 2008 1306 1335
[18] Structure arising from induction and Jacquet modules of representations of classical ð-adic groups J. Algebra 1995 1 33
[19] Démonstration dâune conjecture de dualité de Howe dans le cas ð-adique, ðâ 2 1990 267 324
[20] Induced representations of reductive ð-adic groups. II. On irreducible representations of ðð(ð«) Ann. Sci. Ãcole Norm. Sup. (4) 1980 165 210
Cité par Sources :
