Finite time blowup for an averaged three-dimensional Navier-Stokes equation
Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 601-674

Voir la notice de l'article provenant de la source American Mathematical Society

The Navier-Stokes equation on the Euclidean space $\mathbb {R}^3$ can be expressed in the form $\partial _t u = \Delta u + B(u,u)$, where $B$ is a certain bilinear operator on divergence-free vector fields $u$ obeying the cancellation property $\langle B(u,u), u\rangle =0$ (which is equivalent to the energy identity for the Navier-Stokes equation). In this paper, we consider a modification $\partial _t u = \Delta u + \tilde B(u,u)$ of this equation, where $\tilde B$ is an averaged version of the bilinear operator $B$ (where the average involves rotations, dilations, and Fourier multipliers of order zero), and which also obeys the cancellation condition $\langle \tilde B(u,u), u \rangle = 0$ (so that it obeys the usual energy identity). By analyzing a system of ordinary differential equations related to (but more complicated than) a dyadic Navier-Stokes model of Katz and Pavlovic, we construct an example of a smooth solution to such an averaged Navier-Stokes equation which blows up in finite time. This demonstrates that any attempt to positively resolve the Navier-Stokes global regularity problem in three dimensions has to use a finer structure on the nonlinear portion $B(u,u)$ of the equation than is provided by harmonic analysis estimates and the energy identity. We also propose a program for adapting these blowup results to the true Navier-Stokes equations.
DOI : 10.1090/jams/838

Tao, Terence 1

1 Department of Mathematics, UCLA, Los Angeles, California 90095-1555
@article{10_1090_jams_838,
     author = {Tao, Terence},
     title = {Finite time blowup for an averaged three-dimensional {Navier-Stokes} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {601--674},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2016},
     doi = {10.1090/jams/838},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/838/}
}
TY  - JOUR
AU  - Tao, Terence
TI  - Finite time blowup for an averaged three-dimensional Navier-Stokes equation
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 601
EP  - 674
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/838/
DO  - 10.1090/jams/838
ID  - 10_1090_jams_838
ER  - 
%0 Journal Article
%A Tao, Terence
%T Finite time blowup for an averaged three-dimensional Navier-Stokes equation
%J Journal of the American Mathematical Society
%D 2016
%P 601-674
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/838/
%R 10.1090/jams/838
%F 10_1090_jams_838
Tao, Terence. Finite time blowup for an averaged three-dimensional Navier-Stokes equation. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 601-674. doi: 10.1090/jams/838

[1] Adamatzky (Ed.), A. Game of Life Cellular Automata 2010

[2] Adamatzky, A., Durand-Lose, J. Collision-Based Computing

[3] Alibaud, Nathaã«L, Droniou, Jã©Rã´Me, Vovelle, Julien Occurrence and non-appearance of shocks in fractal Burgers equations J. Hyperbolic Differ. Equ. 2007 479 499

[4] Barbato, David, Morandin, Francesco, Romito, Marco Smooth solutions for the dyadic model Nonlinearity 2011 3083 3097

[5] Barbato, D., Morandin, F., Romito, M. Global regularity for a logarithmically supercritical hyperdissipative dyadic equation Dyn. Partial Differ. Equ. 2014 39 52

[6] Barbato, David, Morandin, Francesco, Romito, Marco Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system Anal. PDE 2014 2009 2027

[7] Li, Dong, Sinai, Ya. G. Blow ups of complex solutions of the 3D Navier-Stokes system and renormalization group method J. Eur. Math. Soc. (JEMS) 2008 267 313

[8] Benioff, Paul Quantum mechanical Hamiltonian models of Turing machines J. Statist. Phys. 1982 515 546

[9] Chemin, Jean-Yves, Gallagher, Isabelle, Paicu, Marius Global regularity for some classes of large solutions to the Navier-Stokes equations Ann. of Math. (2) 2011 983 1012

[10] Cheskidov, Alexey Blow-up in finite time for the dyadic model of the Navier-Stokes equations Trans. Amer. Math. Soc. 2008 5101 5120

[11] Desnjanskii, V. N., Novikov, E. A. Simulation of cascade processes in turbulent flows Prikl. Mat. Mekh. 1974

[12] Dong, Hongjie, Du, Dapeng, Li, Dong Finite time singularities and global well-posedness for fractal Burgers equations Indiana Univ. Math. J. 2009 807 821

[13] Fefferman, Charles L. Existence and smoothness of the Navier-Stokes equation 2006 57 67

[14] Friedlander, Susan, Pavloviä‡, Nataå¡A Remarks concerning modified Navier-Stokes equations Discrete Contin. Dyn. Syst. 2004 269 288

[15] Friedlander, Susan, Pavloviä‡, Nataå¡A Blowup in a three-dimensional vector model for the Euler equations Comm. Pure Appl. Math. 2004 705 725

[16] Iskauriaza, L., Serã«Gin, G. A., Shverak, V. 𝐿_{3,∞}-solutions of Navier-Stokes equations and backward uniqueness Uspekhi Mat. Nauk 2003 3 44

[17] Gallagher, Isabelle, Paicu, Marius Remarks on the blow-up of solutions to a toy model for the Navier-Stokes equations Proc. Amer. Math. Soc. 2009 2075 2083

[18] Kiselev, Alexander, Nazarov, Fedor, Shterenberg, Roman Blow up and regularity for fractal Burgers equation Dyn. Partial Differ. Equ. 2008 211 240

[19] Graca, D., Campagnolo, M., Buescu, J. Robust Simulations of Turing Machines with Analytic Maps and Flows

[20] Grundy, R. E., Mclaughlin, R. Three-dimensional blow-up solutions of the Navier-Stokes equations IMA J. Appl. Math. 1999 287 306

[21] Hou, Thomas Y., Lei, Zhen On the stabilizing effect of convection in three-dimensional incompressible flows Comm. Pure Appl. Math. 2009 501 564

[22] Hou, Thomas Y., Li, Ruo Blowup or no blowup? The interplay between theory and numerics Phys. D 2008 1937 1944

[23] Hou, Thomas Y., Lei, Zhen, Luo, Guo, Wang, Shu, Zou, Chen On finite time singularity and global regularity of an axisymmetric model for the 3D Euler equations Arch. Ration. Mech. Anal. 2014 683 706

[24] Hou, Thomas Y., Shi, Zuoqiang, Wang, Shu On singularity formation of a 3D model for incompressible Navier-Stokes equations Adv. Math. 2012 607 641

[25] Katz, N. H., Pavloviä‡, N. A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation Geom. Funct. Anal. 2002 355 379

[26] Katz, Nets Hawk, Pavloviä‡, Nataå¡A Finite time blow-up for a dyadic model of the Euler equations Trans. Amer. Math. Soc. 2005 695 708

[27] Katz, N. H., Tapay, A. A note on the slightly supercritical Navier Stokes equations in the plane

[28] Kenig, Carlos E., Koch, Gabriel S. An alternative approach to regularity for the Navier-Stokes equations in critical spaces Ann. Inst. H. Poincaré C Anal. Non Linéaire 2011 159 187

[29] Koch, Herbert, Tataru, Daniel Well-posedness for the Navier-Stokes equations Adv. Math. 2001 22 35

[30] Lieb, Elliott H., Loss, Michael Analysis 2001

[31] Luo, G., Hou, T. Potentially Singular Solutions of the 3D Incompressible Euler Equations

[32] Majda, Andrew J., Bertozzi, Andrea L. Vorticity and incompressible flow 2002

[33] Montgomery-Smith, Stephen Finite time blow up for a Navier-Stokes like equation Proc. Amer. Math. Soc. 2001 3025 3029

[34] Nagayama, Masaharu, Okamoto, Hisashi, Zhu, Jinhui On the blow-up of some similarity solutions of the Navier-Stokes equations 2002 137 162

[35] Plechã¡Ä, Petr, Å Verã¡K, Vladimã­R Singular and regular solutions of a nonlinear parabolic system Nonlinearity 2003 2083 2097

[36] Plechã¡Ä, Petr, Å Verã¡K, Vladimã­R On self-similar singular solutions of the complex Ginzburg-Landau equation Comm. Pure Appl. Math. 2001 1215 1242

[37] Pour-El, Marian B., Richards, J. Ian Computability in analysis and physics 1989

[38] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

[39] Tao, Terence Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation Anal. PDE 2009 361 366

[40] Tao, Terence Structure and randomness 2008

[41] Tao, Terence Localisation and compactness properties of the Navier-Stokes global regularity problem Anal. PDE 2013 25 107

[42] Waleffe, Fabian On some dyadic models of the Euler equations Proc. Amer. Math. Soc. 2006 2913 2922

[43] Wu, Jiahong Global regularity for a class of generalized magnetohydrodynamic equations J. Math. Fluid Mech. 2011 295 305

Cité par Sources :