Min-max theory and the energy of links
Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 561-578

Voir la notice de l'article provenant de la source American Mathematical Society

Freedman, He, and Wang conjectured in 1994 that the Möbius energy should be minimized, among the class of all nontrivial links in Euclidean space, by the stereographic projection of the standard Hopf link. We prove this conjecture using the min-max theory of minimal surfaces.
DOI : 10.1090/jams/835

Agol, Ian 1 ; Marques, Fernando 2 ; Neves, André 3

1 Department of Mathematics, University of California, 970 Evans Hall #3840, Berkeley, California 94720-3840
2 Department of Mathematics, Princeton University, Fine Hall, Princeton, New Jersey 08544
3 Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2RH, United Kingdom
@article{10_1090_jams_835,
     author = {Agol, Ian and Marques, Fernando and Neves, Andr\~A{\textcopyright}},
     title = {Min-max theory and the energy of links},
     journal = {Journal of the American Mathematical Society},
     pages = {561--578},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2016},
     doi = {10.1090/jams/835},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/835/}
}
TY  - JOUR
AU  - Agol, Ian
AU  - Marques, Fernando
AU  - Neves, André
TI  - Min-max theory and the energy of links
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 561
EP  - 578
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/835/
DO  - 10.1090/jams/835
ID  - 10_1090_jams_835
ER  - 
%0 Journal Article
%A Agol, Ian
%A Marques, Fernando
%A Neves, André
%T Min-max theory and the energy of links
%J Journal of the American Mathematical Society
%D 2016
%P 561-578
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/835/
%R 10.1090/jams/835
%F 10_1090_jams_835
Agol, Ian; Marques, Fernando; Neves, André. Min-max theory and the energy of links. Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 561-578. doi: 10.1090/jams/835

[1] Almgren, Frederick Justin, Jr. The homotopy groups of the integral cycle groups Topology 1962 257 299

[2] Burago, Dmitri, Burago, Yuri, Ivanov, Sergei A course in metric geometry 2001

[3] Freedman, Michael H., He, Zheng-Xu, Wang, Zhenghan Möbius energy of knots and unknots Ann. of Math. (2) 1994 1 50

[4] He, Zheng-Xu On the minimizers of the Möbius cross energy of links Experiment. Math. 2002 244 248

[5] Kim, Denise, Kusner, Rob Torus knots extremizing the Möbius energy Experiment. Math. 1993 1 9

[6] Marques, Fernando C., Neves, Andrã© Min-max theory and the Willmore conjecture Ann. of Math. (2) 2014 683 782

[7] Morgan, Frank Geometric measure theory 2000

[8] O’Hara, Jun Energy of a knot Topology 1991 241 247

[9] Simon, Leon Lectures on geometric measure theory 1983

[10] Willmore, T. J. Note on embedded surfaces An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 1965 493 496

Cité par Sources :