Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_834,
author = {Tian, Gang and Wang, Bing},
title = {On the structure of almost {Einstein} manifolds},
journal = {Journal of the American Mathematical Society},
pages = {1169--1209},
publisher = {mathdoc},
volume = {28},
number = {4},
year = {2015},
doi = {10.1090/jams/834},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/834/}
}
TY - JOUR AU - Tian, Gang AU - Wang, Bing TI - On the structure of almost Einstein manifolds JO - Journal of the American Mathematical Society PY - 2015 SP - 1169 EP - 1209 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/834/ DO - 10.1090/jams/834 ID - 10_1090_jams_834 ER -
Tian, Gang; Wang, Bing. On the structure of almost Einstein manifolds. Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 1169-1209. doi: 10.1090/jams/834
[1] Ricci curvature bounds and Einstein metrics on compact manifolds J. Amer. Math. Soc. 1989 455 490
[2] Convergence and rigidity of manifolds under Ricci curvature bounds Invent. Math. 1990 429 445
[3] , , On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth Invent. Math. 1989 313 349
[4] The space of Kähler metrics,
[5] Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds Invent. Math. 1985 359 372
[6] , On the structure of spaces with Ricci curvature bounded below. I J. Differential Geom. 1997 406 480
[7] , On the structure of spaces with Ricci curvature bounded below. III J. Differential Geom. 2000 37 74
[8] , , On the singularities of spaces with bounded Ricci curvature Geom. Funct. Anal. 2002 873 914
[9] A lower bound for the smallest eigenvalue of the Laplacian 1970 195 199
[10] Integral bounds on curvature elliptic estimates and rectifiability of singular sets Geom. Funct. Anal. 2003 20 72
[11] Degeneration of Riemannian metrics under Ricci curvature bounds 2001
[12] , Lower bounds on Ricci curvature and quantitative behavior of singular sets Invent. Math. 2013 321 339
[13] , , Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds J. Differential Geometry 1982 15 53
[14] , , Hamiltonâs Ricci flow 2006
[15] The space of Kähler metrics J. Differential Geom. 2000 189 234
[16] , , On conformally Kähler, Einstein manifolds J. Amer. Math. Soc. 2008 1137 1168
[17] , Differential equations on Riemannian manifolds and their geometric applications Comm. Pure Appl. Math. 1975 333 354
[18] Large manifolds with positive Ricci curvature Invent. Math. 1996 193 214
[19] Ricci curvature and volume convergence Ann. of Math. (2) 1997 477 501
[20] , Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications Ann. of Math. (2) 2012 1173 1229
[21] Partial differential equations 2010
[22] Structures métriques pour les variétés riemanniennes 1981
[23] Isoperimetric inequalities in Riemannian manifold, Asymptotic Theory of Finite Dimensional Normed Spaces 1986
[24] Logarithmic Sobolev inequalities and contractivity properties of semigroups 1993 54 88
[25] , Elliptic partial differential equations of second order
[26] Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306
[27] The formation of singularities in the Ricci flow 1995 7 136
[28] Lecture Notes on Geometric Analysis
[29] ð¾-energy maps integrating Futaki invariants Tohoku Math. J. (2) 1986 575 593
[30] The entropy formula for the Ricci flow and its geometric applications
[31] , Relative volume comparison with integral curvature bounds Geom. Funct. Anal. 1997 1031 1045
[32] , Analysis and geometry on manifolds with integral Ricci curvature bounds. II Trans. Amer. Math. Soc. 2001 457 478
[33] Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators J. Functional Analysis 1981 110 120
[34] Ricci deformation of the metric on complete noncompact Riemannian manifolds J. Differential Geom. 1989 303 394
[35] Greatest lower bounds on the Ricci curvature of Fano manifolds Compos. Math. 2011 319 331
[36] On Kähler-Einstein metrics on certain Kähler manifolds with ð¶â(ð)>0 Invent. Math. 1987 225 246
[37] On Calabiâs conjecture for complex surfaces with positive first Chern class Invent. Math. 1990 101 172
[38] Kähler-Einstein metrics with positive scalar curvature Invent. Math. 1997 1 37
[39] , On the Chern number inequality of minimal varieties
[40] , On the Kähler-Ricci flow on projective manifolds of general type Chinese Ann. Math. Ser. B 2006 179 192
[41] Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type Math. Ann. 1988 123 133
[42] On the conditions to extend Ricci flow Int. Math. Res. Not. IMRN 2008
[43] On the conditions to extend Ricci flow(II) Int. Math. Res. Not. IMRN 2012 3192 3223
[44] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411
Cité par Sources :