The partial ð¶â°-estimate along the continuity method
    
    
  
  
  
      
      
      
        
Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 537-560
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source American Mathematical Society
            
              We prove that the partial $C^0$-estimate holds for metrics along Aubinâs continuity method for finding Kähler-Einstein metrics, confirming a special case of a conjecture due to Tian. We use the method developed in recent work of Chen-Donaldson-Sun on the analogous problem for conical Kähler-Einstein metrics.        
            
            
            
          
        
      @article{10_1090_jams_833,
     author = {Sz\~A{\textcopyright}kelyhidi, G\~A{\textexclamdown}bor},
     title = {The partial {\dh}{\textparagraph}\^a{\textdegree}-estimate along the continuity method},
     journal = {Journal of the American Mathematical Society},
     pages = {537--560},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2016},
     doi = {10.1090/jams/833},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/833/}
}
                      
                      
                    TY - JOUR AU - Székelyhidi, Gábor TI - The partial ð¶â°-estimate along the continuity method JO - Journal of the American Mathematical Society PY - 2016 SP - 537 EP - 560 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/833/ DO - 10.1090/jams/833 ID - 10_1090_jams_833 ER -
Székelyhidi, Gábor. The partial ð¶â°-estimate along the continuity method. Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 537-560. doi: 10.1090/jams/833
Cité par Sources :
