The partial 𝐶⁰-estimate along the continuity method
Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 537-560

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the partial $C^0$-estimate holds for metrics along Aubin’s continuity method for finding Kähler-Einstein metrics, confirming a special case of a conjecture due to Tian. We use the method developed in recent work of Chen-Donaldson-Sun on the analogous problem for conical Kähler-Einstein metrics.
DOI : 10.1090/jams/833

Székelyhidi, Gábor 1

1 Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
@article{10_1090_jams_833,
     author = {Sz\~A{\textcopyright}kelyhidi, G\~A{\textexclamdown}bor},
     title = {The partial {\dh}{\textparagraph}\^a{\textdegree}-estimate along the continuity method},
     journal = {Journal of the American Mathematical Society},
     pages = {537--560},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2016},
     doi = {10.1090/jams/833},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/833/}
}
TY  - JOUR
AU  - Székelyhidi, Gábor
TI  - The partial 𝐶⁰-estimate along the continuity method
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 537
EP  - 560
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/833/
DO  - 10.1090/jams/833
ID  - 10_1090_jams_833
ER  - 
%0 Journal Article
%A Székelyhidi, Gábor
%T The partial 𝐶⁰-estimate along the continuity method
%J Journal of the American Mathematical Society
%D 2016
%P 537-560
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/833/
%R 10.1090/jams/833
%F 10_1090_jams_833
Székelyhidi, Gábor. The partial 𝐶⁰-estimate along the continuity method. Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 537-560. doi: 10.1090/jams/833

Cité par Sources :