State-sum invariants of knotted curves and surfaces from quandle cohomology
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 146-156.

Voir la notice de l'article provenant de la source American Mathematical Society

State-sum invariants for classical knots and knotted surfaces in $4$-space are developed via the cohomology theory of quandles. Cohomology groups of quandles are computed to evaluate the invariants. Some twist spun torus knots are shown to be noninvertible using the invariants.
DOI : 10.1090/S1079-6762-99-00073-6

Carter, J. 1 ; Jelsovsky, Daniel 2 ; Kamada, Seiichi 3, 1 ; Langford, Laurel 4 ; Saito, Masahico 2

1 Department of Mathematics, University of South Alabama, Mobile, AL 36688
2 Department of Mathematics, University of South Florida, Tampa, FL 33620
3 Department of Mathematics, Osaka City University, Osaka 558-8585, JAPAN
4 Department of Mathematics, University of Wisconsin at River Falls, River Falls, WI 54022
@article{ERAAMS_1999_05_a19,
     author = {Carter, J. and Jelsovsky, Daniel and Kamada, Seiichi and Langford, Laurel and Saito, Masahico},
     title = {State-sum invariants of knotted curves and surfaces from quandle cohomology},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {146--156},
     publisher = {mathdoc},
     volume = {05},
     year = {1999},
     doi = {10.1090/S1079-6762-99-00073-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00073-6/}
}
TY  - JOUR
AU  - Carter, J.
AU  - Jelsovsky, Daniel
AU  - Kamada, Seiichi
AU  - Langford, Laurel
AU  - Saito, Masahico
TI  - State-sum invariants of knotted curves and surfaces from quandle cohomology
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1999
SP  - 146
EP  - 156
VL  - 05
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00073-6/
DO  - 10.1090/S1079-6762-99-00073-6
ID  - ERAAMS_1999_05_a19
ER  - 
%0 Journal Article
%A Carter, J.
%A Jelsovsky, Daniel
%A Kamada, Seiichi
%A Langford, Laurel
%A Saito, Masahico
%T State-sum invariants of knotted curves and surfaces from quandle cohomology
%J Electronic research announcements of the American Mathematical Society
%D 1999
%P 146-156
%V 05
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00073-6/
%R 10.1090/S1079-6762-99-00073-6
%F ERAAMS_1999_05_a19
Carter, J.; Jelsovsky, Daniel; Kamada, Seiichi; Langford, Laurel; Saito, Masahico. State-sum invariants of knotted curves and surfaces from quandle cohomology. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 146-156. doi : 10.1090/S1079-6762-99-00073-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00073-6/

[1] Brieskorn, E. Automorphic sets and braids and singularities 1988 45 115

[2] Carter, J. Scott, Saito, Masahico Knotted surfaces and their diagrams 1998

[3] Carter, J. Scott, Saito, Masahico On formulations and solutions of simplex equations Internat. J. Modern Phys. A 1996 4453 4463

[4] Carter, J. Scott, Saito, Masahico Canceling branch points on projections of surfaces in 4-space Proc. Amer. Math. Soc. 1992 229 237

[5] Dijkgraaf, Robbert, Witten, Edward Topological gauge theories and group cohomology Comm. Math. Phys. 1990 393 429

[6] Fenn, Roger, Rourke, Colin Racks and links in codimension two J. Knot Theory Ramifications 1992 343 406

[7] Fenn, Roger, Rourke, Colin, Sanderson, Brian Trunks and classifying spaces Appl. Categ. Structures 1995 321 356

[8] Fox, R. H. A quick trip through knot theory 1962 120 167

[9] Jones, V. F. R. Hecke algebra representations of braid groups and link polynomials Ann. of Math. (2) 1987 335 388

[10] Joyce, David A classifying invariant of knots, the knot quandle J. Pure Appl. Algebra 1982 37 65

[11] Hartley, Richard Identifying noninvertible knots Topology 1983 137 145

[12] Hillman, Jonathan A. Finite knot modules and the factorization of certain simple knots Math. Ann. 1981 261 274

[13] Kamada, Seiichi Surfaces in 𝑅⁴ of braid index three are ribbon J. Knot Theory Ramifications 1992 137 160

[14] Kamada, Seiichi A characterization of groups of closed orientable surfaces in 4-space Topology 1994 113 122

[15] Topics in knot theory 1993

[16] Kauffman, Louis H. Knots and physics 1991

[17] Kawauchi, Akio A survey of knot theory 1996

[18] Kawauchi, Akio The invertibility problem on amphicheiral excellent knots Proc. Japan Acad. Ser. A Math. Sci. 1979 399 402

[19] Matveev, S. V. Distributive groupoids in knot theory Mat. Sb. (N.S.) 1982

[20] Murasugi, Kunio Knot theory and its applications 1996

[21] Ruberman, Daniel Doubly slice knots and the Casson-Gordon invariants Trans. Amer. Math. Soc. 1983 569 588

[22] Trotter, H. F. Non-invertible knots exist Topology 1963 275 280

[23] Roseman, Dennis Reidemeister-type moves for surfaces in four-dimensional space 1998 347 380

[24] Rosicki, Witold Some simple invariants of the position of a surface in 𝐑⁴ Bull. Polish Acad. Sci. Math. 1998 335 344

[25] Rudolph, Lee Braided surfaces and Seifert ribbons for closed braids Comment. Math. Helv. 1983 1 37

[26] Wakui, Michihisa On Dijkgraaf-Witten invariant for 3-manifolds Osaka J. Math. 1992 675 696

[27] Zeeman, E. C. Twisting spun knots Trans. Amer. Math. Soc. 1965 471 495

Cité par Sources :