Thickness measures for Cantor sets
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 108-111.

Voir la notice de l'article provenant de la source American Mathematical Society

For a fixed $k\ge 1$ let $C_1,\dots ,C_k$ be generalized Cantor sets. We examine various criteria under which $C_1+\dots + C_k$ contains an interval. When these criteria do not hold, we give a lower bound for the Hausdorff dimension of $C_1+\dots +C_k$. Our work will involve the development of two different types of thickness measures.
DOI : 10.1090/S1079-6762-99-00068-2

Astels, S. 1

1 Department of Pure Mathematics, The University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
@article{ERAAMS_1999_05_a14,
     author = {Astels, S.},
     title = {Thickness measures for {Cantor} sets},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {108--111},
     publisher = {mathdoc},
     volume = {05},
     year = {1999},
     doi = {10.1090/S1079-6762-99-00068-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00068-2/}
}
TY  - JOUR
AU  - Astels, S.
TI  - Thickness measures for Cantor sets
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1999
SP  - 108
EP  - 111
VL  - 05
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00068-2/
DO  - 10.1090/S1079-6762-99-00068-2
ID  - ERAAMS_1999_05_a14
ER  - 
%0 Journal Article
%A Astels, S.
%T Thickness measures for Cantor sets
%J Electronic research announcements of the American Mathematical Society
%D 1999
%P 108-111
%V 05
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00068-2/
%R 10.1090/S1079-6762-99-00068-2
%F ERAAMS_1999_05_a14
Astels, S. Thickness measures for Cantor sets. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 108-111. doi : 10.1090/S1079-6762-99-00068-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00068-2/

[1] Cusick, Thomas W., Flahive, Mary E. The Markoff and Lagrange spectra 1989

[2] Newhouse, Sheldon E. The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms Inst. Hautes Études Sci. Publ. Math. 1979 101 151

[3] Palis, Jacob, Takens, Floris Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations 1993

Cité par Sources :