Pointwise theorems for amenable groups
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 82-90.

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we describe proofs of the pointwise ergodic theorem and Shannon-McMillan-Breiman theorem for discrete amenable groups, along Følner sequences that obey some restrictions. These restrictions are mild enough so that such sequences exist for all amenable groups.
DOI : 10.1090/S1079-6762-99-00065-7

Lindenstrauss, Elon 1

1 Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel
@article{ERAAMS_1999_05_a11,
     author = {Lindenstrauss, Elon},
     title = {Pointwise theorems for amenable groups},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {82--90},
     publisher = {mathdoc},
     volume = {05},
     year = {1999},
     doi = {10.1090/S1079-6762-99-00065-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00065-7/}
}
TY  - JOUR
AU  - Lindenstrauss, Elon
TI  - Pointwise theorems for amenable groups
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1999
SP  - 82
EP  - 90
VL  - 05
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00065-7/
DO  - 10.1090/S1079-6762-99-00065-7
ID  - ERAAMS_1999_05_a11
ER  - 
%0 Journal Article
%A Lindenstrauss, Elon
%T Pointwise theorems for amenable groups
%J Electronic research announcements of the American Mathematical Society
%D 1999
%P 82-90
%V 05
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00065-7/
%R 10.1090/S1079-6762-99-00065-7
%F ERAAMS_1999_05_a11
Lindenstrauss, Elon. Pointwise theorems for amenable groups. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 82-90. doi : 10.1090/S1079-6762-99-00065-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00065-7/

[1] Hebroni, P. Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287

[2] Emerson, William R. The pointwise ergodic theorem for amenable groups Amer. J. Math. 1974 472 487

[3] Greenleaf, Frederick P., Emerson, William R. Group structure and the pointwise ergodic theorem for connected amenable groups Advances in Math. 1974 153 172

[4] Del Junco, Andrés, Rosenblatt, Joseph Counterexamples in ergodic theory and number theory Math. Ann. 1979 185 197

[5] Ornstein, Donald, Weiss, Benjamin The Shannon-McMillan-Breiman theorem for a class of amenable groups Israel J. Math. 1983 53 60

[6] Ornstein, Donald S., Weiss, Benjamin Entropy and isomorphism theorems for actions of amenable groups J. Analyse Math. 1987 1 141

[7] Paterson, Alan L. T. Amenability 1988

[8] Rudolph, Daniel J. Fundamentals of measurable dynamics 1990

[9] Tempel′Man, A. A. Ergodic theorems for general dynamical systems Dokl. Akad. Nauk SSSR 1967 790 793

[10] Tempelman, Arkady Ergodic theorems for group actions 1992

Cité par Sources :