Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_1999_05_a8, author = {Martin, Gaven}, title = {The {Hilbert-Smith} conjecture for quasiconformal actions}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {66--70}, publisher = {mathdoc}, volume = {05}, year = {1999}, doi = {10.1090/S1079-6762-99-00062-1}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00062-1/} }
TY - JOUR AU - Martin, Gaven TI - The Hilbert-Smith conjecture for quasiconformal actions JO - Electronic research announcements of the American Mathematical Society PY - 1999 SP - 66 EP - 70 VL - 05 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00062-1/ DO - 10.1090/S1079-6762-99-00062-1 ID - ERAAMS_1999_05_a8 ER -
%0 Journal Article %A Martin, Gaven %T The Hilbert-Smith conjecture for quasiconformal actions %J Electronic research announcements of the American Mathematical Society %D 1999 %P 66-70 %V 05 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00062-1/ %R 10.1090/S1079-6762-99-00062-1 %F ERAAMS_1999_05_a8
Martin, Gaven. The Hilbert-Smith conjecture for quasiconformal actions. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 66-70. doi : 10.1090/S1079-6762-99-00062-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00062-1/
[1] On the reciprocation of certain matrices Proc. Roy. Soc. Edinburgh 1939 195 206
[2] Quasiconformal 4-manifolds Acta Math. 1989 181 252
,[3] Quasiregular semigroups Ann. Acad. Sci. Fenn. Math. 1996 241 254
,[4] Uniformly quasiregular mappings of Lattès type Conform. Geom. Dyn. 1997 104 111
[5] Sobolev spaces 1985
[6] Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45
[7] Examples of 𝑝-adic transformation groups Ann. of Math. (2) 1963 92 106
,[8] A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps Math. Ann. 1997 361 364
,[9] Quasiregular mappings 1993
[10] 𝑝-adic transformation groups Michigan Math. J. 1960 201 218
Cité par Sources :