The special Schubert calculus is real
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 35-39.

Voir la notice de l'article provenant de la source American Mathematical Society

We show that the Schubert calculus of enumerative geometry is real, for special Schubert conditions. That is, for any such enumerative problem, there exist real conditions for which all the a priori complex solutions are real.
DOI : 10.1090/S1079-6762-99-00058-X

Sottile, Frank 1, 2

1 Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720
2 Department of Mathematics, University of Wisconsin, Van Vleck Hall, 480 Lincoln Drive, Madison, Wisconsin 53706-1388
@article{ERAAMS_1999_05_a4,
     author = {Sottile, Frank},
     title = {The special {Schubert} calculus is real},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {35--39},
     publisher = {mathdoc},
     volume = {05},
     year = {1999},
     doi = {10.1090/S1079-6762-99-00058-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00058-X/}
}
TY  - JOUR
AU  - Sottile, Frank
TI  - The special Schubert calculus is real
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1999
SP  - 35
EP  - 39
VL  - 05
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00058-X/
DO  - 10.1090/S1079-6762-99-00058-X
ID  - ERAAMS_1999_05_a4
ER  - 
%0 Journal Article
%A Sottile, Frank
%T The special Schubert calculus is real
%J Electronic research announcements of the American Mathematical Society
%D 1999
%P 35-39
%V 05
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00058-X/
%R 10.1090/S1079-6762-99-00058-X
%F ERAAMS_1999_05_a4
Sottile, Frank. The special Schubert calculus is real. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 35-39. doi : 10.1090/S1079-6762-99-00058-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00058-X/

[1] Byrnes, C. I. Pole assignment by output feedback 1989 31 78

[2] Eisenbud, D., Harris, J. Divisors on general curves and cuspidal rational curves Invent. Math. 1983 371 418

[3] Fulton, William Introduction to intersection theory in algebraic geometry 1984

[4] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1978

[5] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

[6] Ronga, Felice, Tognoli, Alberto, Vust, Thierry The number of conics tangent to five given conics: the real case Rev. Mat. Univ. Complut. Madrid 1997 391 421

[7] Rosenthal, Joachim, Sottile, Frank Some remarks on real and complex output feedback Systems Control Lett. 1998 73 80

[8] Sottile, Frank Enumerative geometry for the real Grassmannian of lines in projective space Duke Math. J. 1997 59 85

[9] Sottile, Frank Real enumerative geometry and effective algebraic equivalence J. Pure Appl. Algebra 1997 601 615

Cité par Sources :