Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_1999_05_a4, author = {Sottile, Frank}, title = {The special {Schubert} calculus is real}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {35--39}, publisher = {mathdoc}, volume = {05}, year = {1999}, doi = {10.1090/S1079-6762-99-00058-X}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00058-X/} }
TY - JOUR AU - Sottile, Frank TI - The special Schubert calculus is real JO - Electronic research announcements of the American Mathematical Society PY - 1999 SP - 35 EP - 39 VL - 05 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00058-X/ DO - 10.1090/S1079-6762-99-00058-X ID - ERAAMS_1999_05_a4 ER -
%0 Journal Article %A Sottile, Frank %T The special Schubert calculus is real %J Electronic research announcements of the American Mathematical Society %D 1999 %P 35-39 %V 05 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00058-X/ %R 10.1090/S1079-6762-99-00058-X %F ERAAMS_1999_05_a4
Sottile, Frank. The special Schubert calculus is real. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 35-39. doi : 10.1090/S1079-6762-99-00058-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00058-X/
[1] Pole assignment by output feedback 1989 31 78
[2] Divisors on general curves and cuspidal rational curves Invent. Math. 1983 371 418
,[3] Introduction to intersection theory in algebraic geometry 1984
[4] Principles of algebraic geometry 1978
,[5] Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627
[6] The number of conics tangent to five given conics: the real case Rev. Mat. Univ. Complut. Madrid 1997 391 421
, ,[7] Some remarks on real and complex output feedback Systems Control Lett. 1998 73 80
,[8] Enumerative geometry for the real Grassmannian of lines in projective space Duke Math. J. 1997 59 85
[9] Real enumerative geometry and effective algebraic equivalence J. Pure Appl. Algebra 1997 601 615
Cité par Sources :