The Schläfli formula in Einstein manifolds with boundary
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 18-23.

Voir la notice de l'article provenant de la source American Mathematical Society

We give a smooth analogue of the classical Schläfli formula, relating the variation of the volume bounded by a hypersurface moving in a general Einstein manifold and the integral of the variation of the mean curvature. We extend it to variations of the metric in a Riemannian Einstein manifold with boundary, and apply it to Einstein cone-manifolds, to isometric deformations of Euclidean hypersurfaces, and to the rigidity of Ricci-flat manifolds with umbilic boundaries. Résumé. On donne un analogue régulier de la formule classique de Schläfli, reliant la variation du volume borné par une hypersurface se déplaçant dans une variété d’Einstein à l’intégrale de la variation de la courbure moyenne. Puis nous l’étendons aux variations de la métrique à l’intérieur d’une variété d’Einstein riemannienne à bord. On l’applique aux cone-variétés d’Einstein, aux déformations isométriques d’hypersurfaces de $E^n$, et à la rigidité des variétés Ricci-plates à bord ombilique.
DOI : 10.1090/S1079-6762-99-00057-8

Rivin, Igor 1 ; Schlenker, Jean-Marc 2

1 Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, G.B.
2 Topologie et Dynamique (URA 1169 CNRS), Bât. 425, Université de Paris-Sud, 91405 Orsay Cedex, France
@article{ERAAMS_1999_05_a2,
     author = {Rivin, Igor and Schlenker, Jean-Marc},
     title = {The {Schl\"afli} formula in {Einstein} manifolds with boundary},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {18--23},
     publisher = {mathdoc},
     volume = {05},
     year = {1999},
     doi = {10.1090/S1079-6762-99-00057-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00057-8/}
}
TY  - JOUR
AU  - Rivin, Igor
AU  - Schlenker, Jean-Marc
TI  - The Schläfli formula in Einstein manifolds with boundary
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1999
SP  - 18
EP  - 23
VL  - 05
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00057-8/
DO  - 10.1090/S1079-6762-99-00057-8
ID  - ERAAMS_1999_05_a2
ER  - 
%0 Journal Article
%A Rivin, Igor
%A Schlenker, Jean-Marc
%T The Schläfli formula in Einstein manifolds with boundary
%J Electronic research announcements of the American Mathematical Society
%D 1999
%P 18-23
%V 05
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00057-8/
%R 10.1090/S1079-6762-99-00057-8
%F ERAAMS_1999_05_a2
Rivin, Igor; Schlenker, Jean-Marc. The Schläfli formula in Einstein manifolds with boundary. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 18-23. doi : 10.1090/S1079-6762-99-00057-8. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00057-8/

[1] Berger, Marcel, Gostiaux, Bernard Géométrie différentielle: variétés, courbes et surfaces 1992

[2] Bleecker, David D. Volume increasing isometric deformations of convex polyhedra J. Differential Geom. 1996 505 526

[3] Connelly, Robert A counterexample to the rigidity conjecture for polyhedra Inst. Hautes Études Sci. Publ. Math. 1977 333 338

[4] Deturck, Dennis M. Existence of metrics with prescribed Ricci curvature: local theory Invent. Math. 1981/82 179 207

[5] Graham, C. Robin, Lee, John M. Einstein metrics with prescribed conformal infinity on the ball Adv. Math. 1991 186 225

[6] Herglotz, Gustav Gesammelte Schriften 1979

[7] Milnor, John Collected papers. Vol. 1 1994

[8] Perlis, Sam Maximal orders in rational cyclic algebras of composite degree Trans. Amer. Math. Soc. 1939 82 96

[9] Pogorelov, A. V. Extrinsic geometry of convex surfaces 1973

[10] Santaló, Luis A. Integral geometry and geometric probability 1976

[11] Spivak, Michael A comprehensive introduction to differential geometry. Vol. One 1970

[12] Alekseevskij, D. V., Vinberg, È. B., Solodovnikov, A. S. Geometry of spaces of constant curvature 1993 1 138

Cité par Sources :