Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_1999_05_a0, author = {Calogero, A.}, title = {Wavelets on general lattices, associated with general expanding maps of {\ensuremath{\mathbf{R}}ⁿ}}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {1--10}, publisher = {mathdoc}, volume = {05}, year = {1999}, doi = {10.1090/S1079-6762-99-00054-2}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00054-2/} }
TY - JOUR AU - Calogero, A. TI - Wavelets on general lattices, associated with general expanding maps of 𝐑ⁿ JO - Electronic research announcements of the American Mathematical Society PY - 1999 SP - 1 EP - 10 VL - 05 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00054-2/ DO - 10.1090/S1079-6762-99-00054-2 ID - ERAAMS_1999_05_a0 ER -
%0 Journal Article %A Calogero, A. %T Wavelets on general lattices, associated with general expanding maps of 𝐑ⁿ %J Electronic research announcements of the American Mathematical Society %D 1999 %P 1-10 %V 05 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00054-2/ %R 10.1090/S1079-6762-99-00054-2 %F ERAAMS_1999_05_a0
Calogero, A. Wavelets on general lattices, associated with general expanding maps of 𝐑ⁿ. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 1-10. doi : 10.1090/S1079-6762-99-00054-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00054-2/
[1] Ondelettes et traitement numérique du signal 1992
[2] Nonseparable bidimensional wavelet bases Rev. Mat. Iberoamericana 1993 51 137
,[3] Wavelet sets in 𝐑ⁿ J. Fourier Anal. Appl. 1997 451 456
, ,[4] On multiresolution analysis of multiplicity 𝑑 Monatsh. Math. 1997 255 272
,[5] A necessary and sufficient condition for the existence of a father wavelet Studia Math. 1995 207 226
[6] Fractal functions and wavelet expansions based on several scaling functions J. Approx. Theory 1994 373 401
, ,[7] Multiresolution analysis, Haar bases, and self-similar tilings of 𝑅ⁿ IEEE Trans. Inform. Theory 1992 556 568
,[8] Multi-resolution analysis of multiplicity 𝑑: applications to dyadic interpolation Appl. Comput. Harmon. Anal. 1994 299 315
[9] A first course on wavelets 1996
,[10] Smoothing minimally supported frequency wavelets. I J. Fourier Anal. Appl. 1996 329 340
, ,[11] Smoothing minimally supported frequency wavelets. II J. Fourier Anal. Appl. 1997 23 41
, ,[12] Les ondelettes en 1989 1990
[13] Some elementary properties of multiresolution analyses of 𝐿²(𝑅ⁿ) 1992 259 294
[14] Ondelettes et opérateurs. I 1990
[15] Wavelets and filter banks 1996
,[16] Construction of orthonormal wavelets 1994 23 50
[17] Wavelets and self-affine tilings Constr. Approx. 1993 327 346
Cité par Sources :