Voir la notice de l'article provenant de la source American Mathematical Society
Higson, Nigel 1 ; Kasparov, Gennadi 2
@article{10_1090_S1079_6762_97_00038_3, author = {Higson, Nigel and Kasparov, Gennadi}, title = {Operator {\dh}{\textthreequarters}-theory for groups which act properly and isometrically on {Hilbert} space}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {131--142}, publisher = {mathdoc}, volume = {03}, year = {1997}, doi = {10.1090/S1079-6762-97-00038-3}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00038-3/} }
TY - JOUR AU - Higson, Nigel AU - Kasparov, Gennadi TI - Operator ð¾-theory for groups which act properly and isometrically on Hilbert space JO - Electronic research announcements of the American Mathematical Society PY - 1997 SP - 131 EP - 142 VL - 03 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00038-3/ DO - 10.1090/S1079-6762-97-00038-3 ID - 10_1090_S1079_6762_97_00038_3 ER -
%0 Journal Article %A Higson, Nigel %A Kasparov, Gennadi %T Operator ð¾-theory for groups which act properly and isometrically on Hilbert space %J Electronic research announcements of the American Mathematical Society %D 1997 %P 131-142 %V 03 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00038-3/ %R 10.1090/S1079-6762-97-00038-3 %F 10_1090_S1079_6762_97_00038_3
Higson, Nigel; Kasparov, Gennadi. Operator ð¾-theory for groups which act properly and isometrically on Hilbert space. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 131-142. doi: 10.1090/S1079-6762-97-00038-3
[1] Bott periodicity and the index of elliptic operators Quart. J. Math. Oxford Ser. (2) 1968 113 140
[2] Classifying space for proper actions and ð¾-theory of group ð¶*-algebras 1994 240 291
, ,[3] Proper affine isometric actions of amenable groups 1995 1 4
, ,[4] ð¾-theory for operator algebras 1986
[5] An analogue of the Thom isomorphism for crossed products of a ð¶*-algebra by an action of ð Adv. in Math. 1981 31 55
[6] Déformations, morphismes asymptotiques et ð¾-théorie bivariante C. R. Acad. Sci. Paris Sér. I Math. 1990 101 106
,[7] 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations Bull. Soc. Math. France 1977 281 336
[8] A history and survey of the Novikov conjecture 1995 7 66
, ,[9] Operator algebras and applications. Part 1 1982
[10] Asymptotic invariants of infinite groups 1993 1 295
[11] La propriété (ð) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) Astérisque 1989 158
,[12] ð¾-théorie équivariante et produits croisés C. R. Acad. Sci. Paris Sér. I Math. 1981 629 632
[13] Equivariant ð¾ð¾-theory and the Novikov conjecture Invent. Math. 1988 147 201
[14] Equivariant triviality theorems for Hilbert ð¶*-modules Proc. Amer. Math. Soc. 1984 225 230
,[15] ð¶*-algebras and their automorphism groups 1979
[16] Equivariant ð¾-theory Inst. Hautes Ãtudes Sci. Publ. Math. 1968 129 151
[17] Exact ð¶*-algebras and related topics 1994
Cité par Sources :