Higson, Nigel 1 ; Kasparov, Gennadi 2
@article{10_1090_S1079_6762_97_00038_3,
author = {Higson, Nigel and Kasparov, Gennadi},
title = {Operator {\ensuremath{\mathit{K}}-theory} for groups which act properly and isometrically on {Hilbert} space},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {131--142},
year = {1997},
volume = {03},
doi = {10.1090/S1079-6762-97-00038-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00038-3/}
}
TY - JOUR AU - Higson, Nigel AU - Kasparov, Gennadi TI - Operator 𝐾-theory for groups which act properly and isometrically on Hilbert space JO - Electronic research announcements of the American Mathematical Society PY - 1997 SP - 131 EP - 142 VL - 03 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00038-3/ DO - 10.1090/S1079-6762-97-00038-3 ID - 10_1090_S1079_6762_97_00038_3 ER -
%0 Journal Article %A Higson, Nigel %A Kasparov, Gennadi %T Operator 𝐾-theory for groups which act properly and isometrically on Hilbert space %J Electronic research announcements of the American Mathematical Society %D 1997 %P 131-142 %V 03 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00038-3/ %R 10.1090/S1079-6762-97-00038-3 %F 10_1090_S1079_6762_97_00038_3
Higson, Nigel; Kasparov, Gennadi. Operator 𝐾-theory for groups which act properly and isometrically on Hilbert space. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 131-142. doi: 10.1090/S1079-6762-97-00038-3
[1] Bott periodicity and the index of elliptic operators Quart. J. Math. Oxford Ser. (2) 1968 113 140
[2] , , Classifying space for proper actions and 𝐾-theory of group 𝐶*-algebras 1994 240 291
[3] , , Proper affine isometric actions of amenable groups 1995 1 4
[4] 𝐾-theory for operator algebras 1986
[5] An analogue of the Thom isomorphism for crossed products of a 𝐶*-algebra by an action of 𝑅 Adv. in Math. 1981 31 55
[6] , Déformations, morphismes asymptotiques et 𝐾-théorie bivariante C. R. Acad. Sci. Paris Sér. I Math. 1990 101 106
[7] 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations Bull. Soc. Math. France 1977 281 336
[8] , , A history and survey of the Novikov conjecture 1995 7 66
[9] Operator algebras and applications. Part 1 1982
[10] Asymptotic invariants of infinite groups 1993 1 295
[11] , La propriété (𝑇) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) Astérisque 1989 158
[12] 𝐾-théorie équivariante et produits croisés C. R. Acad. Sci. Paris Sér. I Math. 1981 629 632
[13] Equivariant 𝐾𝐾-theory and the Novikov conjecture Invent. Math. 1988 147 201
[14] , Equivariant triviality theorems for Hilbert 𝐶*-modules Proc. Amer. Math. Soc. 1984 225 230
[15] 𝐶*-algebras and their automorphism groups 1979
[16] Equivariant 𝐾-theory Inst. Hautes Études Sci. Publ. Math. 1968 129 151
[17] Exact 𝐶*-algebras and related topics 1994
Cité par Sources :