Wave propagation in a lattice KPP equation in random media
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 121-125.

Voir la notice de l'article provenant de la source American Mathematical Society

We extend a result of Freidlin and Gartner (1979) for KPP (Kolmogorov-Petrovskii-Piskunov) wave fronts to the case $d\ge 2$ for i.i.d. (independent and identically distributed) random media. We show a wave front propagation speed is attained for the discrete-space (lattice) KPP using a large deviation approach.
DOI : 10.1090/S1079-6762-97-00036-X

Lee, Tzong-Yow 1 ; Torcaso, Fred 1

1 Department of Mathematics, University of Maryland, College Park, MD 20742
@article{ERAAMS_1997_03_a19,
     author = {Lee, Tzong-Yow and Torcaso, Fred},
     title = {Wave propagation in a lattice {KPP} equation in random media},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {121--125},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00036-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00036-X/}
}
TY  - JOUR
AU  - Lee, Tzong-Yow
AU  - Torcaso, Fred
TI  - Wave propagation in a lattice KPP equation in random media
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 121
EP  - 125
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00036-X/
DO  - 10.1090/S1079-6762-97-00036-X
ID  - ERAAMS_1997_03_a19
ER  - 
%0 Journal Article
%A Lee, Tzong-Yow
%A Torcaso, Fred
%T Wave propagation in a lattice KPP equation in random media
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 121-125
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00036-X/
%R 10.1090/S1079-6762-97-00036-X
%F ERAAMS_1997_03_a19
Lee, Tzong-Yow; Torcaso, Fred. Wave propagation in a lattice KPP equation in random media. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 121-125. doi : 10.1090/S1079-6762-97-00036-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00036-X/

[1] Dembo, Amir, Zeitouni, Ofer Large deviations techniques and applications 1993

[2] Freidlin, Mark Functional integration and partial differential equations 1985

[3] Gertner, Ju., Freĭdlin, M. I. The propagation of concentration waves in periodic and random media Dokl. Akad. Nauk SSSR 1979 521 525

[4] Liggett, Thomas M. Interacting particle systems 1985

[5] Sznitman, Alain-Sol Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential Comm. Pure Appl. Math. 1994 1655 1688

[6] Sznitman, Alain-Sol Crossing velocities and random lattice animals Ann. Probab. 1995 1006 1023

Cité par Sources :