The Williams conjecture is false for irreducible subshifts
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 105-109
Cet article a éte moissonné depuis la source American Mathematical Society
We prove that the Williams conjecture is false for irreducible subshifts of finite type using relative sign-gyration numbers defined between different subshifts.
Affiliations des auteurs :
Kim, K. 1 ; Roush, F. 2
@article{10_1090_S1079_6762_97_00032_2,
author = {Kim, K. and Roush, F.},
title = {The {Williams} conjecture is false for irreducible subshifts},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {105--109},
year = {1997},
volume = {03},
doi = {10.1090/S1079-6762-97-00032-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00032-2/}
}
TY - JOUR AU - Kim, K. AU - Roush, F. TI - The Williams conjecture is false for irreducible subshifts JO - Electronic research announcements of the American Mathematical Society PY - 1997 SP - 105 EP - 109 VL - 03 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00032-2/ DO - 10.1090/S1079-6762-97-00032-2 ID - 10_1090_S1079_6762_97_00032_2 ER -
%0 Journal Article %A Kim, K. %A Roush, F. %T The Williams conjecture is false for irreducible subshifts %J Electronic research announcements of the American Mathematical Society %D 1997 %P 105-109 %V 03 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00032-2/ %R 10.1090/S1079-6762-97-00032-2 %F 10_1090_S1079_6762_97_00032_2
Kim, K.; Roush, F. The Williams conjecture is false for irreducible subshifts. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 105-109. doi: 10.1090/S1079-6762-97-00032-2
[1] , Williams’s conjecture is false for reducible subshifts J. Amer. Math. Soc. 1992 213 215
[2] , , Automorphisms of the dimension group and gyration numbers J. Amer. Math. Soc. 1992 191 212
[3] , An introduction to symbolic dynamics and coding 1995
[4] Classification of subshifts of finite type Ann. of Math. (2) 1973
Cité par Sources :