Classification of compact complex homogeneous spaces with invariant volumes
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 90-92.

Voir la notice de l'article provenant de la source American Mathematical Society

In this note we give a classification of compact complex homogeneous spaces with invariant volume.
DOI : 10.1090/S1079-6762-97-00028-0

Guan, Daniel 1

1 Department of Mathematics, Princeton University, Princeton, NJ 08544
@article{ERAAMS_1997_03_a12,
     author = {Guan, Daniel},
     title = {Classification of compact complex homogeneous spaces with invariant volumes},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {90--92},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00028-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00028-0/}
}
TY  - JOUR
AU  - Guan, Daniel
TI  - Classification of compact complex homogeneous spaces with invariant volumes
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 90
EP  - 92
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00028-0/
DO  - 10.1090/S1079-6762-97-00028-0
ID  - ERAAMS_1997_03_a12
ER  - 
%0 Journal Article
%A Guan, Daniel
%T Classification of compact complex homogeneous spaces with invariant volumes
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 90-92
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00028-0/
%R 10.1090/S1079-6762-97-00028-0
%F ERAAMS_1997_03_a12
Guan, Daniel. Classification of compact complex homogeneous spaces with invariant volumes. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 90-92. doi : 10.1090/S1079-6762-97-00028-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00028-0/

[1] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[2] Borel, A., Remmert, R. Über kompakte homogene Kählersche Mannigfaltigkeiten Math. Ann. 1961/62 429 439

[3] Dorfmeister, Josef, Guan, Zhuang Dan Classification of compact homogeneous pseudo-Kähler manifolds Comment. Math. Helv. 1992 499 513

[4] Dorfmeister, Josef, Guan, Zhuang Dan Fine structure of reductive pseudo-Kählerian spaces Geom. Dedicata 1991 321 338

[5] Dorfmeister, Josef, Guan, Zhuang Dan Pseudo-Kählerian homogeneous spaces admitting a reductive transitive group of automorphisms Math. Z. 1992 89 100

[6] Dorfmeister, Josef, Nakajima, Kazufumi The fundamental conjecture for homogeneous Kähler manifolds Acta Math. 1988 23 70

[7] Hano, Jun-Ichi Equivariant projective immersion of a complex coset space with non-degenerate canonical hermitian form Scripta Math. 1973 125 139

[8] Hano, Jun-Ichi On compact complex coset spaces of reductive Lie groups Proc. Amer. Math. Soc. 1964 159 163

[9] Hano, Jun-Ichi, Kobayashi, Shoshichi A fibering of a class of homogeneous complex manifolds Trans. Amer. Math. Soc. 1960 233 243

[10] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[11] Maclane, Saunders, Schilling, O. F. G. Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782

[12] Matsushima, Yozô Sur certaines variétés homogènes complexes Nagoya Math. J. 1961 1 12

[13] Tits, J. Espaces homogènes complexes compacts Comment. Math. Helv. 1962/63 111 120

[14] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[15] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

Cité par Sources :