Voir la notice de l'article provenant de la source American Mathematical Society
McLaughlin, Joyce 1 ; Portnoy, Arturo 1
@article{ERAAMS_1997_03_a9, author = {McLaughlin, Joyce and Portnoy, Arturo}, title = {Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {72--77}, publisher = {mathdoc}, volume = {03}, year = {1997}, doi = {10.1090/S1079-6762-97-00027-9}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00027-9/} }
TY - JOUR AU - McLaughlin, Joyce AU - Portnoy, Arturo TI - Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force JO - Electronic research announcements of the American Mathematical Society PY - 1997 SP - 72 EP - 77 VL - 03 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00027-9/ DO - 10.1090/S1079-6762-97-00027-9 ID - ERAAMS_1997_03_a9 ER -
%0 Journal Article %A McLaughlin, Joyce %A Portnoy, Arturo %T Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force %J Electronic research announcements of the American Mathematical Society %D 1997 %P 72-77 %V 03 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00027-9/ %R 10.1090/S1079-6762-97-00027-9 %F ERAAMS_1997_03_a9
McLaughlin, Joyce; Portnoy, Arturo. Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 72-77. doi : 10.1090/S1079-6762-97-00027-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00027-9/
[1] Inverse nodal problems: finding the potential from nodal lines Mem. Amer. Math. Soc. 1996
,[2] A formula for finding a potential from nodal lines Bull. Amer. Math. Soc. (N.S.) 1995 241 247
,[3] The perturbatively stable spectrum of a periodic Schrödinger operator Invent. Math. 1990 259 300
, ,[4] On the spectrum of the periodic problem for the Schrödinger operator Comm. Partial Differential Equations 1990 1631 1647
[5] Analytic perturbation theory for a periodic potential Izv. Akad. Nauk SSSR Ser. Mat. 1989 45 65
[6] Geometrical background for the perturbation theory of the polyharmonic operator with periodic potentials 1989 251 276
[7] Perturbation theory for linear operators 1976
[8] Diophantine approximations and Diophantine equations 1991
[9] Introduction to functional analysis 1980
,Cité par Sources :