Inert actions on periodic points
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 55-62.

Voir la notice de l'article provenant de la source American Mathematical Society

The action of inert automorphisms on finite sets of periodic points of mixing subshifts of finite type is characterized in terms of the sign-gyration-compatibility condition. The main technique used is variable length coding combined with a “nonnegative algebraic K-theory" formulation of state splitting and merging. One application gives a counterexample to the Finite Order Generation Conjecture by producing examples of infinite order inert automorphisms of mixing subshifts of finite type which are not products of finite order automorphisms.
DOI : 10.1090/S1079-6762-97-00024-3

Kim, K. 1 ; Roush, F. 1 ; Wagoner, J. 2

1 Department of Mathematics, Alabama State University, Montgomery, Alabama 36101
2 Department of Mathematics, UCB, Berkeley, California 94720
@article{ERAAMS_1997_03_a7,
     author = {Kim, K. and Roush, F. and Wagoner, J.},
     title = {Inert actions on periodic points},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00024-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00024-3/}
}
TY  - JOUR
AU  - Kim, K.
AU  - Roush, F.
AU  - Wagoner, J.
TI  - Inert actions on periodic points
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 55
EP  - 62
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00024-3/
DO  - 10.1090/S1079-6762-97-00024-3
ID  - ERAAMS_1997_03_a7
ER  - 
%0 Journal Article
%A Kim, K.
%A Roush, F.
%A Wagoner, J.
%T Inert actions on periodic points
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 55-62
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00024-3/
%R 10.1090/S1079-6762-97-00024-3
%F ERAAMS_1997_03_a7
Kim, K.; Roush, F.; Wagoner, J. Inert actions on periodic points. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 55-62. doi : 10.1090/S1079-6762-97-00024-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00024-3/

[1] Boyle, Mike The stochastic shift equivalence conjecture is false 1992 107 110

[2] Boyle, Mike, Fiebig, Ulf-Rainer The action of inert finite-order automorphisms on finite subsystems of the shift Ergodic Theory Dynam. Systems 1991 413 425

[3] Block, Louis, Guckenheimer, John, Misiurewicz, Michał, Young, Lai Sang Periodic points and topological entropy of one-dimensional maps 1980 18 34

[4] Boyle, Mike, Krieger, Wolfgang Periodic points and automorphisms of the shift Trans. Amer. Math. Soc. 1987 125 149

[5] Boyle, Mike, Krieger, Wolfgang Automorphisms and subsystems of the shift J. Reine Angew. Math. 1993 13 28

[6] Boyle, Mike, Lind, Douglas, Rudolph, Daniel The automorphism group of a shift of finite type Trans. Amer. Math. Soc. 1988 71 114

[7] Hedlund, G. A. Endomorphisms and automorphisms of the shift dynamical system Math. Systems Theory 1969 320 375

[8] Krieger, Wolfgang On the subsystems of topological Markov chains Ergodic Theory Dynam. Systems 1982

[9] Kim, K. H., Roush, F. W. On the structure of inert automorphisms of subshifts Pure Math. Appl. Ser. B 1991 3 22

[10] Kim, K. H., Roush, F. W. Williams’s conjecture is false for reducible subshifts J. Amer. Math. Soc. 1992 213 215

[11] Kim, K. H., Roush, F. W., Wagoner, J. B. Automorphisms of the dimension group and gyration numbers J. Amer. Math. Soc. 1992 191 212

[12] Lind, Douglas, Marcus, Brian An introduction to symbolic dynamics and coding 1995

[13] Smale, S. Differentiable dynamical systems Bull. Amer. Math. Soc. 1967 747 817

[14] Wagoner, J. B. Classification of subshifts of finite type revisited 1992 423 444

Cité par Sources :