Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S1079_6762_97_00022_X, author = {Zhang, Qi}, title = {Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact {Yamabe} problem}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {45--51}, publisher = {mathdoc}, volume = {03}, year = {1997}, doi = {10.1090/S1079-6762-97-00022-X}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00022-X/} }
TY - JOUR AU - Zhang, Qi TI - Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact Yamabe problem JO - Electronic research announcements of the American Mathematical Society PY - 1997 SP - 45 EP - 51 VL - 03 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00022-X/ DO - 10.1090/S1079-6762-97-00022-X ID - 10_1090_S1079_6762_97_00022_X ER -
%0 Journal Article %A Zhang, Qi %T Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact Yamabe problem %J Electronic research announcements of the American Mathematical Society %D 1997 %P 45-51 %V 03 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00022-X/ %R 10.1090/S1079-6762-97-00022-X %F 10_1090_S1079_6762_97_00022_X
Zhang, Qi. Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact Yamabe problem. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 45-51. doi: 10.1090/S1079-6762-97-00022-X
[1] Non-negative solutions of linear parabolic equations Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 1968 607 694
[2] The scalar curvature 1976 5 18
[3] Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds J. Differential Geom. 1988 225 239
,[4] Heat kernels and spectral theory 1989
[5] On the blowing up of solutions of the Cauchy problem for ð¢_{ð¡} J. Fac. Sci. Univ. Tokyo Sect. I 1966
[6] The heat equation on noncompact Riemannian manifolds Mat. Sb. 1991 55 87
[7] Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306
[8] Prescribing the curvature of a Riemannian manifold 1985
[9] The role of critical exponents in blowup theorems SIAM Rev. 1990 262 288
[10] Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem Trans. Amer. Math. Soc. 1992 365 378
,[11] LineÄ nye i kvazilineÄ nye uravneniya parabolicheskogo tipa 1967 736
, ,[12] On the parabolic kernel of the Schrödinger operator Acta Math. 1986 153 201
,[13] On the critical exponent for reaction-diffusion equations Arch. Rational Mech. Anal. 1990 63 71
[14] A Harnack inequality for parabolic differential equations Comm. Pure Appl. Math. 1964 101 134
[15] On the elliptic equation Îð¢+ð¾(ð¥)ð¢^{(ð+2)/(ð-2)} Indiana Univ. Math. J. 1982 493 529
[16] A note on Poincaré, Sobolev, and Harnack inequalities Internat. Math. Res. Notices 1992 27 38
[17] Conformal deformation of a Riemannian metric to constant scalar curvature J. Differential Geom. 1984 479 495
[18] Deforming the metric on complete Riemannian manifolds J. Differential Geom. 1989 223 301
[19] Remarks concerning the conformal deformation of Riemannian structures on compact manifolds Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 1968 265 274
[20] On a deformation of Riemannian structures on compact manifolds Osaka Math. J. 1960 21 37
[21] Seminar on Differential Geometry 1982
[22] On the existence of positive solutions of nonlinear elliptic equationsâa probabilistic potential theory approach Duke Math. J. 1993 247 258
[23] On a parabolic equation with a singular lower order term Trans. Amer. Math. Soc. 1996 2811 2844
Cité par Sources :