Weighted polynomial approximation in the complex plane
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 38-44.

Voir la notice de l'article provenant de la source American Mathematical Society

Given a pair $(G,W)$ of an open bounded set $G$ in the complex plane and a weight function $W(z)$ which is analytic and different from zero in $G$, we consider the problem of the locally uniform approximation of any function $f(z)$, which is analytic in $G$, by weighted polynomials of the form $\left \{W^{n}(z)P_{n}(z) \right \}^{\infty }_{n=0}$, where $\deg P_{n} \leq n$. The main result of this paper is a necessary and sufficient condition for such an approximation to be valid. We also consider a number of applications of this result to various classical weights, which give explicit criteria for these weighted approximations.
DOI : 10.1090/S1079-6762-97-00021-8

Pritsker, Igor 1 ; Varga, Richard 1

1 Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242-0001
@article{ERAAMS_1997_03_a4,
     author = {Pritsker, Igor and Varga, Richard},
     title = {Weighted polynomial approximation in the complex plane},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {38--44},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00021-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00021-8/}
}
TY  - JOUR
AU  - Pritsker, Igor
AU  - Varga, Richard
TI  - Weighted polynomial approximation in the complex plane
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 38
EP  - 44
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00021-8/
DO  - 10.1090/S1079-6762-97-00021-8
ID  - ERAAMS_1997_03_a4
ER  - 
%0 Journal Article
%A Pritsker, Igor
%A Varga, Richard
%T Weighted polynomial approximation in the complex plane
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 38-44
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00021-8/
%R 10.1090/S1079-6762-97-00021-8
%F ERAAMS_1997_03_a4
Pritsker, Igor; Varga, Richard. Weighted polynomial approximation in the complex plane. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 38-44. doi : 10.1090/S1079-6762-97-00021-8. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00021-8/

[1] Borwein, P. B., Chen, Weiyu Incomplete rational approximation in the complex plane Constr. Approx. 1995 85 106

[2] Von Golitschek, M. Approximation by incomplete polynomials J. Approx. Theory 1980 155 160

[3] Landkof, N. S. Foundations of modern potential theory 1972

[4] Lorentz, G. G. Approximation by incomplete polynomials (problems and results) 1977 289 302

[5] Nevanlinna, Rolf Analytic functions 1970

[6] Saff, E. B., Varga, R. S. On incomplete polynomials 1978 281 298

[7] Totik, Vilmos Weighted approximation with varying weight 1994

[8] Tsuji, M. Potential theory in modern function theory 1959 590

[9] Walsh, J. L. Interpolation and approximation by rational functions in the complex domain 1960

Cité par Sources :