Representations of integral quadratic forms over dyadic local fields
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 100-112.

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we give necessary and sufficient conditions for the representations of quadratic lattices over arbitrary dyadic fields. Our result is given in terms of Bases of Norm Generators (BONGs, for short). However, they can be translated in terms of the more traditional Jordan decompositions.
DOI : 10.1090/S1079-6762-06-00165-X

Beli, Constantin 1

1 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21 Calea Grivitei Street, 010702-Bucharest, Sector 1, Romania
@article{ERAAMS_2006_12_a12,
     author = {Beli, Constantin},
     title = {Representations of integral quadratic forms over dyadic local fields},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {100--112},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00165-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00165-X/}
}
TY  - JOUR
AU  - Beli, Constantin
TI  - Representations of integral quadratic forms over dyadic local fields
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 100
EP  - 112
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00165-X/
DO  - 10.1090/S1079-6762-06-00165-X
ID  - ERAAMS_2006_12_a12
ER  - 
%0 Journal Article
%A Beli, Constantin
%T Representations of integral quadratic forms over dyadic local fields
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 100-112
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00165-X/
%R 10.1090/S1079-6762-06-00165-X
%F ERAAMS_2006_12_a12
Beli, Constantin. Representations of integral quadratic forms over dyadic local fields. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 100-112. doi : 10.1090/S1079-6762-06-00165-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00165-X/

[1] Beli, Constantin N. Integral spinor norm groups over dyadic local fields J. Number Theory 2003 125 182

[2] O’Meara, O. T. Introduction to quadratic forms 1963

[3] O’Meara, O. T. The integral representations of quadratic forms over local fields Amer. J. Math. 1958 843 878

[4] Riehm, Carl On the integral representations of quadratic forms over local fields Amer. J. Math. 1964 25 62

Cité par Sources :