Quasigroup associativity and biased expansion graphs
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 13-18.

Voir la notice de l'article provenant de la source American Mathematical Society

We present new criteria for a multary (or polyadic) quasigroup to be isotopic to an iterated group operation. The criteria are consequences of a structural analysis of biased expansion graphs. We mention applications to transversal designs and generalized Dowling geometries.
DOI : 10.1090/S1079-6762-06-00155-7

Zaslavsky, Thomas 1

1 Binghamton University, Binghamton, New York 13902-6000
@article{ERAAMS_2006_12_a1,
     author = {Zaslavsky, Thomas},
     title = {Quasigroup associativity and biased expansion graphs},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {13--18},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00155-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00155-7/}
}
TY  - JOUR
AU  - Zaslavsky, Thomas
TI  - Quasigroup associativity and biased expansion graphs
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 13
EP  - 18
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00155-7/
DO  - 10.1090/S1079-6762-06-00155-7
ID  - ERAAMS_2006_12_a1
ER  - 
%0 Journal Article
%A Zaslavsky, Thomas
%T Quasigroup associativity and biased expansion graphs
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 13-18
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00155-7/
%R 10.1090/S1079-6762-06-00155-7
%F ERAAMS_2006_12_a1
Zaslavsky, Thomas. Quasigroup associativity and biased expansion graphs. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 13-18. doi : 10.1090/S1079-6762-06-00155-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00155-7/

[1] Aczél, J., Belousov, V. D., Hosszú, M. Generalized associativity and bisymmetry on quasigroups Acta Math. Acad. Sci. Hungar. 1960 127 136

[2] Akivis, Maks A., Goldberg, Vladislav V. Solution of Belousov’s problem Discuss. Math. Gen. Algebra Appl. 2001 93 103

[3] Belousov, V. D., Sandik, M. D. 𝑁-ary quasi-groups and loops Sibirsk. Mat. Ž. 1966 31 54

[4] Dowling, T. A. A class of geometric lattices based on finite groups J. Combinatorial Theory Ser. B 1973 61 86

[5] Frenkin, B. R. Reducibility and uniform reducibility in certain classes of 𝑛-groupoids. II Mat. Issled. 1972 150 162

[6] Hosszú, Miklós A theorem of Belousov and some of its applications Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 1959 51 56

[7] Kahn, J., Kung, J. P. S. Varieties of combinatorial geometries Trans. Amer. Math. Soc. 1982 485 499

[8] Tutte, W. T. Graph theory 1984

[9] Zaslavsky, Thomas Biased graphs. I. Bias, balance, and gains J. Combin. Theory Ser. B 1989 32 52

Cité par Sources :