@article{10_1090_S1079_6762_06_00155_7,
author = {Zaslavsky, Thomas},
title = {Quasigroup associativity and biased expansion graphs},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {13--18},
year = {2006},
volume = {12},
doi = {10.1090/S1079-6762-06-00155-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00155-7/}
}
TY - JOUR AU - Zaslavsky, Thomas TI - Quasigroup associativity and biased expansion graphs JO - Electronic research announcements of the American Mathematical Society PY - 2006 SP - 13 EP - 18 VL - 12 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00155-7/ DO - 10.1090/S1079-6762-06-00155-7 ID - 10_1090_S1079_6762_06_00155_7 ER -
%0 Journal Article %A Zaslavsky, Thomas %T Quasigroup associativity and biased expansion graphs %J Electronic research announcements of the American Mathematical Society %D 2006 %P 13-18 %V 12 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00155-7/ %R 10.1090/S1079-6762-06-00155-7 %F 10_1090_S1079_6762_06_00155_7
Zaslavsky, Thomas. Quasigroup associativity and biased expansion graphs. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 13-18. doi: 10.1090/S1079-6762-06-00155-7
[1] , , Generalized associativity and bisymmetry on quasigroups Acta Math. Acad. Sci. Hungar. 1960 127 136
[2] , Solution of Belousov’s problem Discuss. Math. Gen. Algebra Appl. 2001 93 103
[3] , 𝑁-ary quasi-groups and loops Sibirsk. Mat. Ž. 1966 31 54
[4] A class of geometric lattices based on finite groups J. Combinatorial Theory Ser. B 1973 61 86
[5] Reducibility and uniform reducibility in certain classes of 𝑛-groupoids. II Mat. Issled. 1972 150 162
[6] A theorem of Belousov and some of its applications Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 1959 51 56
[7] , Varieties of combinatorial geometries Trans. Amer. Math. Soc. 1982 485 499
[8] Graph theory 1984
[9] Biased graphs. I. Bias, balance, and gains J. Combin. Theory Ser. B 1989 32 52
Cité par Sources :