Compactness and global estimates for the geometric Paneitz equation in high dimensions
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 135-141.

Voir la notice de l'article provenant de la source American Mathematical Society

Given $(M,g)$, a smooth compact Riemannian manifold of dimension $n \ge 5$, we investigate compactness for the fourth order geometric equation $P_gu = u^{2^\sharp -1}$, where $P_g$ is the Paneitz operator, and $2^\sharp = 2n/(n-4)$ is critical from the Sobolev viewpoint. We prove that the equation is compact when the Paneitz operator is of strong positive type.
DOI : 10.1090/S1079-6762-04-00138-6

Hebey, Emmanuel 1 ; Robert, Frédéric 2

1 Université de Cergy-Pontoise, Département de Mathématiques, Site de Saint-Martin, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France
2 Laboratoire J.A.Dieudonné, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2, France
@article{ERAAMS_2004_10_a14,
     author = {Hebey, Emmanuel and Robert, Fr\'ed\'eric},
     title = {Compactness and global estimates for the geometric {Paneitz} equation in high dimensions},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {135--141},
     publisher = {mathdoc},
     volume = {10},
     year = {2004},
     doi = {10.1090/S1079-6762-04-00138-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00138-6/}
}
TY  - JOUR
AU  - Hebey, Emmanuel
AU  - Robert, Frédéric
TI  - Compactness and global estimates for the geometric Paneitz equation in high dimensions
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2004
SP  - 135
EP  - 141
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00138-6/
DO  - 10.1090/S1079-6762-04-00138-6
ID  - ERAAMS_2004_10_a14
ER  - 
%0 Journal Article
%A Hebey, Emmanuel
%A Robert, Frédéric
%T Compactness and global estimates for the geometric Paneitz equation in high dimensions
%J Electronic research announcements of the American Mathematical Society
%D 2004
%P 135-141
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00138-6/
%R 10.1090/S1079-6762-04-00138-6
%F ERAAMS_2004_10_a14
Hebey, Emmanuel; Robert, Frédéric. Compactness and global estimates for the geometric Paneitz equation in high dimensions. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 135-141. doi : 10.1090/S1079-6762-04-00138-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00138-6/

[1] Agmon, S., Douglis, A., Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I Comm. Pure Appl. Math. 1959 623 727

[2] Agmon, S., Douglis, A., Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II Comm. Pure Appl. Math. 1964 35 92

[3] Branson, Thomas P. Group representations arising from Lorentz conformal geometry J. Funct. Anal. 1987 199 291

[4] Chang, Sun-Yung A. On a fourth-order partial differential equation in conformal geometry 1999 127 150

[5] Chang, Sun-Yung A., Yang, Paul C. On a fourth order curvature invariant 1999 9 28

[6] Esposito, Pierpaolo, Robert, Frédéric Mountain pass critical points for Paneitz-Branson operators Calc. Var. Partial Differential Equations 2002 493 517

[7] Hebey, Emmanuel, Robert, Frédéric Coercivity and Struwe’s compactness for Paneitz type operators with constant coefficients Calc. Var. Partial Differential Equations 2001 491 517

[8] Schoen, Richard M. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics 1989 120 154

[9] Schoen, R., Yau, S.-T. Conformally flat manifolds, Kleinian groups and scalar curvature Invent. Math. 1988 47 71

[10] Xu, Xingwang, Yang, Paul C. Positivity of Paneitz operators Discrete Contin. Dynam. Systems 2001 329 342

Cité par Sources :