Well-approximable angles and mixing for flows on 𝕋² with nonsingular fixed points
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 113-121.

Voir la notice de l'article provenant de la source American Mathematical Society

We consider special flows over circle rotations with an asymmetric function having logarithmic singularities. If some expressions containing singularity coefficients are different from any negative integer, then there exists a class of well-approximable angles of rotation such that the special flow over the rotation of this class is mixing.
DOI : 10.1090/S1079-6762-04-00136-2

Kochergin, A. 1

1 Department of Economics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
@article{ERAAMS_2004_10_a12,
     author = {Kochergin, A.},
     title = {Well-approximable angles and mixing for flows on {\ensuremath{\mathbb{T}}{\texttwosuperior}} with nonsingular fixed points},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {113--121},
     publisher = {mathdoc},
     volume = {10},
     year = {2004},
     doi = {10.1090/S1079-6762-04-00136-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00136-2/}
}
TY  - JOUR
AU  - Kochergin, A.
TI  - Well-approximable angles and mixing for flows on 𝕋² with nonsingular fixed points
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2004
SP  - 113
EP  - 121
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00136-2/
DO  - 10.1090/S1079-6762-04-00136-2
ID  - ERAAMS_2004_10_a12
ER  - 
%0 Journal Article
%A Kochergin, A.
%T Well-approximable angles and mixing for flows on 𝕋² with nonsingular fixed points
%J Electronic research announcements of the American Mathematical Society
%D 2004
%P 113-121
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00136-2/
%R 10.1090/S1079-6762-04-00136-2
%F ERAAMS_2004_10_a12
Kochergin, A. Well-approximable angles and mixing for flows on 𝕋² with nonsingular fixed points. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 113-121. doi : 10.1090/S1079-6762-04-00136-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00136-2/

[1] Arnol′D, V. I. Topological and ergodic properties of closed 1-forms with incommensurable periods Funktsional. Anal. i Prilozhen. 1991

[2] SinaÄ­, Ya. G., Khanin, K. M. Mixing of some classes of special flows over rotations of the circle Funktsional. Anal. i Prilozhen. 1992 1 21

[3] KoÄŤergin, A. V. Nondegenerate saddles, and the absence of mixing Mat. Zametki 1976 453 468

[4] Kochergin, A. V. Nondegenerate fixed points and mixing in flows on a two-dimensional torus Mat. Sb. 2003 83 112

[5] Kochergin, A. V. Nondegenerate fixed points and mixing in flows on a two-dimensional torus. II Mat. Sb. 2004 15 46

Cité par Sources :