Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_2004_10_a12, author = {Kochergin, A.}, title = {Well-approximable angles and mixing for flows on {\ensuremath{\mathbb{T}}{\texttwosuperior}} with nonsingular fixed points}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {113--121}, publisher = {mathdoc}, volume = {10}, year = {2004}, doi = {10.1090/S1079-6762-04-00136-2}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00136-2/} }
TY - JOUR AU - Kochergin, A. TI - Well-approximable angles and mixing for flows on 𝕋² with nonsingular fixed points JO - Electronic research announcements of the American Mathematical Society PY - 2004 SP - 113 EP - 121 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00136-2/ DO - 10.1090/S1079-6762-04-00136-2 ID - ERAAMS_2004_10_a12 ER -
%0 Journal Article %A Kochergin, A. %T Well-approximable angles and mixing for flows on 𝕋² with nonsingular fixed points %J Electronic research announcements of the American Mathematical Society %D 2004 %P 113-121 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00136-2/ %R 10.1090/S1079-6762-04-00136-2 %F ERAAMS_2004_10_a12
Kochergin, A. Well-approximable angles and mixing for flows on 𝕋² with nonsingular fixed points. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 113-121. doi : 10.1090/S1079-6762-04-00136-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00136-2/
[1] Topological and ergodic properties of closed 1-forms with incommensurable periods Funktsional. Anal. i Prilozhen. 1991
[2] Mixing of some classes of special flows over rotations of the circle Funktsional. Anal. i Prilozhen. 1992 1 21
,[3] Nondegenerate saddles, and the absence of mixing Mat. Zametki 1976 453 468
[4] Nondegenerate fixed points and mixing in flows on a two-dimensional torus Mat. Sb. 2003 83 112
[5] Nondegenerate fixed points and mixing in flows on a two-dimensional torus. II Mat. Sb. 2004 15 46
Cité par Sources :