Wavelets with composite dilations
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 78-87.

Voir la notice de l'article provenant de la source American Mathematical Society

A wavelet with composite dilations is a function generating an orthonormal basis or a Parseval frame for $L^2({\mathbb R}^n)$ under the action of lattice translations and dilations by products of elements drawn from non-commuting matrix sets $A$ and $B$. Typically, the members of $B$ are shear matrices (all eigenvalues are one), while the members of $A$ are matrices expanding or contracting on a proper subspace of ${\mathbb R}^n$. These wavelets are of interest in applications because of their tendency to produce “long, narrow” window functions well suited to edge detection. In this paper, we discuss the remarkable extent to which the theory of wavelets with composite dilations parallels the theory of classical wavelets, and present several examples of such systems.
DOI : 10.1090/S1079-6762-04-00132-5

Guo, Kanghui 1 ; Labate, Demetrio 2 ; Lim, Wang-Q 3 ; Weiss, Guido 3 ; Wilson, Edward 3

1 Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
2 Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
3 Department of Mathematics, Washington University, St. Louis, Missouri 63130
@article{ERAAMS_2004_10_a8,
     author = {Guo, Kanghui and Labate, Demetrio and Lim, Wang-Q and Weiss, Guido and Wilson, Edward},
     title = {Wavelets with composite dilations},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {78--87},
     publisher = {mathdoc},
     volume = {10},
     year = {2004},
     doi = {10.1090/S1079-6762-04-00132-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00132-5/}
}
TY  - JOUR
AU  - Guo, Kanghui
AU  - Labate, Demetrio
AU  - Lim, Wang-Q
AU  - Weiss, Guido
AU  - Wilson, Edward
TI  - Wavelets with composite dilations
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2004
SP  - 78
EP  - 87
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00132-5/
DO  - 10.1090/S1079-6762-04-00132-5
ID  - ERAAMS_2004_10_a8
ER  - 
%0 Journal Article
%A Guo, Kanghui
%A Labate, Demetrio
%A Lim, Wang-Q
%A Weiss, Guido
%A Wilson, Edward
%T Wavelets with composite dilations
%J Electronic research announcements of the American Mathematical Society
%D 2004
%P 78-87
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00132-5/
%R 10.1090/S1079-6762-04-00132-5
%F ERAAMS_2004_10_a8
Guo, Kanghui; Labate, Demetrio; Lim, Wang-Q; Weiss, Guido; Wilson, Edward. Wavelets with composite dilations. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 78-87. doi : 10.1090/S1079-6762-04-00132-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00132-5/

[1] Candès, Emmanuel J., Donoho, David L. Ridgelets: a key to higher-dimensional intermittency? R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 1999 2495 2509

[2] Candès, Emmanuel J., Donoho, David L. New tight frames of curvelets and optimal representations of objects with piecewise 𝐶² singularities Comm. Pure Appl. Math. 2004 219 266

[3] Meyer, François G., Coifman, Ronald R. Brushlets: a tool for directional image analysis and image compression Appl. Comput. Harmon. Anal. 1997 147 187

[4] Donoho, David L., Huo, Xiaoming Beamlets and multiscale image analysis 2002 149 196

[5] Hernández, Eugenio, Labate, Demetrio, Weiss, Guido A unified characterization of reproducing systems generated by a finite family. II J. Geom. Anal. 2002 615 662

[6] Hernández, Eugenio, Weiss, Guido A first course on wavelets 1996

[7] Hörmander, Lars The analysis of linear partial differential operators. I 2003

[8] Stein, Elias M., Weiss, Guido Introduction to Fourier analysis on Euclidean spaces 1971

[9] Weiss, G., Wilson, E. N. The mathematical theory of wavelets 2001 329 366

Cité par Sources :