Homeomorphism groups of manifolds and Erdos space
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 29-38.

Voir la notice de l'article provenant de la source American Mathematical Society

Let $M$ be either a topological manifold, a Hilbert cube manifold, or a Menger manifold and let $D$ be an arbitrary countable dense subset of $M$. Consider the topological group $\mathcal {H}(M,D)$ which consists of all autohomeomorphisms of $M$ that map $D$ onto itself equipped with the compact-open topology. We present a complete solution to the topological classification problem for $\mathcal {H}(M,D)$ as follows. If $M$ is a one-dimensional topological manifold, then $\mathcal {H}(M,D)$ is homeomorphic to $\mathbb {Q}^\infty$, the countable power of the space of rational numbers. In all other cases we found that $\mathcal {H}(M,D)$ is homeomorphic to the famed Erdős space $\mathfrak E$, which consists of the vectors in Hilbert space $\ell ^2$ with rational coordinates. We obtain the second result by developing topological characterizations of Erdős space.
DOI : 10.1090/S1079-6762-04-00127-1

Dijkstra, Jan 1 ; van Mill, Jan 1

1 Faculteit der Exacte Wetenschappen/Afdeling Wiskunde, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
@article{ERAAMS_2004_10_a3,
     author = {Dijkstra, Jan and van Mill, Jan},
     title = {Homeomorphism groups of manifolds and {Erdos} space},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {10},
     year = {2004},
     doi = {10.1090/S1079-6762-04-00127-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00127-1/}
}
TY  - JOUR
AU  - Dijkstra, Jan
AU  - van Mill, Jan
TI  - Homeomorphism groups of manifolds and Erdos space
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2004
SP  - 29
EP  - 38
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00127-1/
DO  - 10.1090/S1079-6762-04-00127-1
ID  - ERAAMS_2004_10_a3
ER  - 
%0 Journal Article
%A Dijkstra, Jan
%A van Mill, Jan
%T Homeomorphism groups of manifolds and Erdos space
%J Electronic research announcements of the American Mathematical Society
%D 2004
%P 29-38
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00127-1/
%R 10.1090/S1079-6762-04-00127-1
%F ERAAMS_2004_10_a3
Dijkstra, Jan; van Mill, Jan. Homeomorphism groups of manifolds and Erdos space. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 29-38. doi : 10.1090/S1079-6762-04-00127-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00127-1/

[1] Collar, A. R. On the reciprocation of certain matrices Proc. Roy. Soc. Edinburgh 1939 195 206

[2] Bessaga, Czesław, Pełczyński, Aleksander Selected topics in infinite-dimensional topology 1975 353

[3] Bestvina, Mladen Characterizing 𝑘-dimensional universal Menger compacta Mem. Amer. Math. Soc. 1988

[4] Bula, Witold D., Oversteegen, Lex G. A characterization of smooth Cantor bouquets Proc. Amer. Math. Soc. 1990 529 534

[5] Charatonik, Włodzimierz J. The Lelek fan is unique Houston J. Math. 1989 27 34

[6] Dobrowolski, T., Toruńczyk, H. Separable complete ANRs admitting a group structure are Hilbert manifolds Topology Appl. 1981 229 235

[7] Van Engelen, A. J. M. Homogeneous zero-dimensional absolute Borel sets 1986

[8] Dickson, Leonard Eugene New First Course in the Theory of Equations 1939

[9] Ferry, Steve The homeomorphism group of a compact Hilbert cube manifold is an 𝐴𝑁𝑅 Ann. of Math. (2) 1977 101 119

[10] Kawamura, Kazuhiro, Oversteegen, Lex G., Tymchatyn, E. D. On homogeneous totally disconnected 1-dimensional spaces Fund. Math. 1996 97 112

[11] Keesling, James Using flows to construct Hilbert space factors of function spaces Trans. Amer. Math. Soc. 1971 1 24

[12] Baron, S. Neue Beweise der Hauptsätze für Summierbarkeitsfaktoren Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. Tehn. Tead. Seer. 1960 47 68

[13] Levin, Michael, Pol, Roman A metric condition which implies dimension ≤1 Proc. Amer. Math. Soc. 1997 269 273

[14] Luke, R., Mason, W. K. The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract Trans. Amer. Math. Soc. 1972 275 285

[15] Oversteegen, Lex G., Tymchatyn, E. D. On the dimension of certain totally disconnected spaces Proc. Amer. Math. Soc. 1994 885 891

[16] Pol, R. There is no universal totally disconnected space Fund. Math. 1973 265 267

[17] Steel, John R. Analytic sets and Borel isomorphisms Fund. Math. 1980 83 88

[18] Toruńczyk, Henryk Homeomorphism groups of compact Hilbert cube manifolds which are manifolds Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 1977 401 408

[19] Toruńczyk, H. On 𝐶𝐸-images of the Hilbert cube and characterization of 𝑄-manifolds Fund. Math. 1980 31 40

[20] Toruńczyk, H. Characterizing Hilbert space topology Fund. Math. 1981 247 262

Cité par Sources :