Completing Lie algebra actions to Lie group actions
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 1-10
Cet article a éte moissonné depuis la source American Mathematical Society
For a finite-dimensional Lie algebra $\mathfrak {g}$ of vector fields on a manifold $M$ we show that $M$ can be completed to a $G$-space in a universal way, which however is neither Hausdorff nor $T_1$ in general. Here $G$ is a connected Lie group with Lie-algebra $\mathfrak {g}$. For a transitive $\mathfrak {g}$-action the completion is of the form $G/H$ for a Lie subgroup $H$ which need not be closed. In general the completion can be constructed by completing each $\mathfrak {g}$-orbit.
Affiliations des auteurs :
Kamber, Franz 1 ; Michor, Peter 2
@article{10_1090_S1079_6762_04_00124_6,
author = {Kamber, Franz and Michor, Peter},
title = {Completing {Lie} algebra actions to {Lie} group actions},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {1--10},
year = {2004},
volume = {10},
doi = {10.1090/S1079-6762-04-00124-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00124-6/}
}
TY - JOUR AU - Kamber, Franz AU - Michor, Peter TI - Completing Lie algebra actions to Lie group actions JO - Electronic research announcements of the American Mathematical Society PY - 2004 SP - 1 EP - 10 VL - 10 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00124-6/ DO - 10.1090/S1079-6762-04-00124-6 ID - 10_1090_S1079_6762_04_00124_6 ER -
%0 Journal Article %A Kamber, Franz %A Michor, Peter %T Completing Lie algebra actions to Lie group actions %J Electronic research announcements of the American Mathematical Society %D 2004 %P 1-10 %V 10 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00124-6/ %R 10.1090/S1079-6762-04-00124-6 %F 10_1090_S1079_6762_04_00124_6
Kamber, Franz; Michor, Peter. Completing Lie algebra actions to Lie group actions. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 1-10. doi: 10.1090/S1079-6762-04-00124-6
[1] , Differential geometry of 𝔤-manifolds Differential Geom. Appl. 1995 371 403
[2] , The flow completion of a manifold with vector field Electron. Res. Announc. Amer. Math. Soc. 2000 95 97
[3] , , Natural operations in differential geometry 1993
[4] , The convenient setting of global analysis 1997
[5] A global formulation of the Lie theory of transformation groups Mem. Amer. Math. Soc. 1957
Cité par Sources :