Voir la notice de l'article provenant de la source American Mathematical Society
Kamber, Franz 1 ; Michor, Peter 2
@article{ERAAMS_2004_10_a0, author = {Kamber, Franz and Michor, Peter}, title = {Completing {Lie} algebra actions to {Lie} group actions}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {1--10}, publisher = {mathdoc}, volume = {10}, year = {2004}, doi = {10.1090/S1079-6762-04-00124-6}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00124-6/} }
TY - JOUR AU - Kamber, Franz AU - Michor, Peter TI - Completing Lie algebra actions to Lie group actions JO - Electronic research announcements of the American Mathematical Society PY - 2004 SP - 1 EP - 10 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00124-6/ DO - 10.1090/S1079-6762-04-00124-6 ID - ERAAMS_2004_10_a0 ER -
%0 Journal Article %A Kamber, Franz %A Michor, Peter %T Completing Lie algebra actions to Lie group actions %J Electronic research announcements of the American Mathematical Society %D 2004 %P 1-10 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00124-6/ %R 10.1090/S1079-6762-04-00124-6 %F ERAAMS_2004_10_a0
Kamber, Franz; Michor, Peter. Completing Lie algebra actions to Lie group actions. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 1-10. doi : 10.1090/S1079-6762-04-00124-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00124-6/
[1] Differential geometry of 𝔤-manifolds Differential Geom. Appl. 1995 371 403
,[2] The flow completion of a manifold with vector field Electron. Res. Announc. Amer. Math. Soc. 2000 95 97
,[3] Natural operations in differential geometry 1993
, ,[4] The convenient setting of global analysis 1997
,[5] A global formulation of the Lie theory of transformation groups Mem. Amer. Math. Soc. 1957
Cité par Sources :