On 3-graded Lie algebras, Jordan pairs and the canonical kernel function
Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 142-151.

Voir la notice de l'article provenant de la source American Mathematical Society

We present several embedding results for $3$-graded Lie algebras and KKT algebras that are generated by two homogeneous elements of degrees $1$ and $-1$. We also propose the canonical kernel function for a “universal Bergman kernel” which extends the usual Bergman kernel on a bounded symmetric domain to a group-valued function or, in terms of formal series, to an element in the formal completion of the universal enveloping algebra of the free $3$-graded Lie algebra in a pair of generators.
DOI : 10.1090/S1079-6762-03-00122-7

de Oliveira, M. 1

1 Department of Mathematics, University of Toronto, Canada
@article{ERAAMS_2003_09_a17,
     author = {de Oliveira, M.},
     title = {On 3-graded {Lie} algebras, {Jordan} pairs and the canonical kernel function},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {142--151},
     publisher = {mathdoc},
     volume = {09},
     year = {2003},
     doi = {10.1090/S1079-6762-03-00122-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00122-7/}
}
TY  - JOUR
AU  - de Oliveira, M.
TI  - On 3-graded Lie algebras, Jordan pairs and the canonical kernel function
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2003
SP  - 142
EP  - 151
VL  - 09
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00122-7/
DO  - 10.1090/S1079-6762-03-00122-7
ID  - ERAAMS_2003_09_a17
ER  - 
%0 Journal Article
%A de Oliveira, M.
%T On 3-graded Lie algebras, Jordan pairs and the canonical kernel function
%J Electronic research announcements of the American Mathematical Society
%D 2003
%P 142-151
%V 09
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00122-7/
%R 10.1090/S1079-6762-03-00122-7
%F ERAAMS_2003_09_a17
de Oliveira, M. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 142-151. doi : 10.1090/S1079-6762-03-00122-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00122-7/

[1] Davidson, M. G., Fabec, R. C. Geometric realizations for highest weight representations 1995 13 31

[2] De Oliveira, Marcelo P. Some formulas for the canonical kernel function Geom. Dedicata 2001 227 247

[3] De Oliveira, M. P. On commutation relations for 3-graded Lie algebras New York J. Math. 2001 71 86

[4] De Oliveira, M. P., Luciano, O. O. A characterization of 3-graded Lie algebras generated by a pair J. Pure Appl. Algebra 2002 175 194

[5] Faraut, Jacques, Kaneyuki, Soji, Korányi, Adam, Lu, Qi-Keng, Roos, Guy Analysis and geometry on complex homogeneous domains 2000

[6] Faraut, J., Korányi, A. Function spaces and reproducing kernels on bounded symmetric domains J. Funct. Anal. 1990 64 89

[7] Arf, Cahit Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper J. Reine Angew. Math. 1939 1 44

[8] Langlands, R. P. The dimension of spaces of automorphic forms Amer. J. Math. 1963 99 125

[9] Loos, Ottmar Jordan pairs 1975

[10] Neher, E. Generators and relations for 3-graded Lie algebras J. Algebra 1993 1 35

[11] Satake, Ichirô A group extension and its unitary representation Sūgaku 1969 241 253

[12] Satake, Ichirô Factors of automorphy and Fock representations Advances in Math. 1971 83 110

[13] Satake, Ichirô Algebraic structures of symmetric domains 1980

[14] Wallach, Nolan R. The analytic continuation of the discrete series. I, II Trans. Amer. Math. Soc. 1979

Cité par Sources :