Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_2003_09_a17, author = {de Oliveira, M.}, title = {On 3-graded {Lie} algebras, {Jordan} pairs and the canonical kernel function}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {142--151}, publisher = {mathdoc}, volume = {09}, year = {2003}, doi = {10.1090/S1079-6762-03-00122-7}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00122-7/} }
TY - JOUR AU - de Oliveira, M. TI - On 3-graded Lie algebras, Jordan pairs and the canonical kernel function JO - Electronic research announcements of the American Mathematical Society PY - 2003 SP - 142 EP - 151 VL - 09 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00122-7/ DO - 10.1090/S1079-6762-03-00122-7 ID - ERAAMS_2003_09_a17 ER -
%0 Journal Article %A de Oliveira, M. %T On 3-graded Lie algebras, Jordan pairs and the canonical kernel function %J Electronic research announcements of the American Mathematical Society %D 2003 %P 142-151 %V 09 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00122-7/ %R 10.1090/S1079-6762-03-00122-7 %F ERAAMS_2003_09_a17
de Oliveira, M. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 142-151. doi : 10.1090/S1079-6762-03-00122-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00122-7/
[1] Geometric realizations for highest weight representations 1995 13 31
,[2] Some formulas for the canonical kernel function Geom. Dedicata 2001 227 247
[3] On commutation relations for 3-graded Lie algebras New York J. Math. 2001 71 86
[4] A characterization of 3-graded Lie algebras generated by a pair J. Pure Appl. Algebra 2002 175 194
,[5] Analysis and geometry on complex homogeneous domains 2000
, , , ,[6] Function spaces and reproducing kernels on bounded symmetric domains J. Funct. Anal. 1990 64 89
,[7] Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper J. Reine Angew. Math. 1939 1 44
[8] The dimension of spaces of automorphic forms Amer. J. Math. 1963 99 125
[9] Jordan pairs 1975
[10] Generators and relations for 3-graded Lie algebras J. Algebra 1993 1 35
[11] A group extension and its unitary representation Sūgaku 1969 241 253
[12] Factors of automorphy and Fock representations Advances in Math. 1971 83 110
[13] Algebraic structures of symmetric domains 1980
[14] The analytic continuation of the discrete series. I, II Trans. Amer. Math. Soc. 1979
Cité par Sources :