Voir la notice de l'article provenant de la source American Mathematical Society
Colding, Tobias 1 ; Kleiner, Bruce 2
@article{ERAAMS_2003_09_a14, author = {Colding, Tobias and Kleiner, Bruce}, title = {Singularity structure in mean curvature flow of mean-convex sets}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {121--124}, publisher = {mathdoc}, volume = {09}, year = {2003}, doi = {10.1090/S1079-6762-03-00119-7}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00119-7/} }
TY - JOUR AU - Colding, Tobias AU - Kleiner, Bruce TI - Singularity structure in mean curvature flow of mean-convex sets JO - Electronic research announcements of the American Mathematical Society PY - 2003 SP - 121 EP - 124 VL - 09 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00119-7/ DO - 10.1090/S1079-6762-03-00119-7 ID - ERAAMS_2003_09_a14 ER -
%0 Journal Article %A Colding, Tobias %A Kleiner, Bruce %T Singularity structure in mean curvature flow of mean-convex sets %J Electronic research announcements of the American Mathematical Society %D 2003 %P 121-124 %V 09 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00119-7/ %R 10.1090/S1079-6762-03-00119-7 %F ERAAMS_2003_09_a14
Colding, Tobias; Kleiner, Bruce. Singularity structure in mean curvature flow of mean-convex sets. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 121-124. doi : 10.1090/S1079-6762-03-00119-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00119-7/
[1] The motion of a surface by its mean curvature 1978
[2] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations J. Differential Geom. 1991 749 786
, ,[3] Motion of level sets by mean curvature. I J. Differential Geom. 1991 635 681
,[4] Convexity estimates for mean curvature flow and singularities of mean convex surfaces Acta Math. 1999 45 70
,[5] Mean curvature flow singularities for mean convex surfaces Calc. Var. Partial Differential Equations 1999 1 14
,[6] Elliptic regularization and partial regularity for motion by mean curvature Mem. Amer. Math. Soc. 1994
[7] Transformationen von algebraischem Typ Ann. of Math. (2) 1939 549 559
[8] The size of the singular set in mean curvature flow of mean-convex sets J. Amer. Math. Soc. 2000 665 695
[9] The nature of singularities in mean curvature flow of mean-convex sets J. Amer. Math. Soc. 2003 123 138
Cité par Sources :