Nonholonomic tangent spaces: intrinsic construction and rigid dimensions
Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 111-120.

Voir la notice de l'article provenant de la source American Mathematical Society

A nonholonomic space is a smooth manifold equipped with a bracket generating family of vector fields. Its infinitesimal version is a homogeneous space of a nilpotent Lie group endowed with a dilation which measures the anisotropy of the space. We give an intrinsic construction of these infinitesimal objects and classify all rigid (i.e. not deformable) cases.
DOI : 10.1090/S1079-6762-03-00118-5

Agrachev, A. 1, 2 ; Marigo, A. 3

1 Steklov Mathematical Institute, Moscow, Russia
2 SISSA, Via Beirut 2–4, Trieste, Italy
3 IAC-CNR, Viale Policlinico 136, Roma, Italy
@article{ERAAMS_2003_09_a13,
     author = {Agrachev, A. and Marigo, A.},
     title = {Nonholonomic tangent spaces: intrinsic construction and rigid dimensions},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {09},
     year = {2003},
     doi = {10.1090/S1079-6762-03-00118-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00118-5/}
}
TY  - JOUR
AU  - Agrachev, A.
AU  - Marigo, A.
TI  - Nonholonomic tangent spaces: intrinsic construction and rigid dimensions
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2003
SP  - 111
EP  - 120
VL  - 09
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00118-5/
DO  - 10.1090/S1079-6762-03-00118-5
ID  - ERAAMS_2003_09_a13
ER  - 
%0 Journal Article
%A Agrachev, A.
%A Marigo, A.
%T Nonholonomic tangent spaces: intrinsic construction and rigid dimensions
%J Electronic research announcements of the American Mathematical Society
%D 2003
%P 111-120
%V 09
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00118-5/
%R 10.1090/S1079-6762-03-00118-5
%F ERAAMS_2003_09_a13
Agrachev, A.; Marigo, A. Nonholonomic tangent spaces: intrinsic construction and rigid dimensions. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 111-120. doi : 10.1090/S1079-6762-03-00118-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00118-5/

[1] Agrachëv, A. A., Sarychev, A. V. Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controllable systems Dokl. Akad. Nauk SSSR 1987 777 781

[2] Agrachëv, A. A., Gamkrelidze, R. V., Sarychev, A. V. Local invariants of smooth control systems Acta Appl. Math. 1989 191 237

[3] Bellaïche, André The tangent space in sub-Riemannian geometry 1996 1 78

[4] Bianchini, Rosa Maria, Stefani, Gianna Graded approximations and controllability along a trajectory SIAM J. Control Optim. 1990 903 924

[5] Venkatarayudu, T. The 7-15 problem Proc. Indian Acad. Sci., Sect. A. 1939 531

[6] Rothschild, Linda Preiss, Stein, E. M. Hypoelliptic differential operators and nilpotent groups Acta Math. 1976 247 320

[7] Sundaram, S. Minakshi On non-linear partial differential equations of the hyperbolic type Proc. Indian Acad. Sci., Sect. A. 1939 495 503

[8] Vershik, A. M., Gershkovich, V. Ya. A bundle of nilpotent Lie algebras over a nonholonomic manifold (nilpotentization) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1989

[9] Vershik, A. M., Gershkovich, V. Ya. Estimation of the functional dimension of the orbit space of germs of distributions in general position Mat. Zametki 1988

Cité par Sources :