Voir la notice de l'article provenant de la source American Mathematical Society
Agrachev, A. 1, 2 ; Marigo, A. 3
@article{ERAAMS_2003_09_a13, author = {Agrachev, A. and Marigo, A.}, title = {Nonholonomic tangent spaces: intrinsic construction and rigid dimensions}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {111--120}, publisher = {mathdoc}, volume = {09}, year = {2003}, doi = {10.1090/S1079-6762-03-00118-5}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00118-5/} }
TY - JOUR AU - Agrachev, A. AU - Marigo, A. TI - Nonholonomic tangent spaces: intrinsic construction and rigid dimensions JO - Electronic research announcements of the American Mathematical Society PY - 2003 SP - 111 EP - 120 VL - 09 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00118-5/ DO - 10.1090/S1079-6762-03-00118-5 ID - ERAAMS_2003_09_a13 ER -
%0 Journal Article %A Agrachev, A. %A Marigo, A. %T Nonholonomic tangent spaces: intrinsic construction and rigid dimensions %J Electronic research announcements of the American Mathematical Society %D 2003 %P 111-120 %V 09 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00118-5/ %R 10.1090/S1079-6762-03-00118-5 %F ERAAMS_2003_09_a13
Agrachev, A.; Marigo, A. Nonholonomic tangent spaces: intrinsic construction and rigid dimensions. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 111-120. doi : 10.1090/S1079-6762-03-00118-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00118-5/
[1] Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controllable systems Dokl. Akad. Nauk SSSR 1987 777 781
,[2] Local invariants of smooth control systems Acta Appl. Math. 1989 191 237
, ,[3] The tangent space in sub-Riemannian geometry 1996 1 78
[4] Graded approximations and controllability along a trajectory SIAM J. Control Optim. 1990 903 924
,[5] The 7-15 problem Proc. Indian Acad. Sci., Sect. A. 1939 531
[6] Hypoelliptic differential operators and nilpotent groups Acta Math. 1976 247 320
,[7] On non-linear partial differential equations of the hyperbolic type Proc. Indian Acad. Sci., Sect. A. 1939 495 503
[8] A bundle of nilpotent Lie algebras over a nonholonomic manifold (nilpotentization) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1989
,[9] Estimation of the functional dimension of the orbit space of germs of distributions in general position Mat. Zametki 1988
,Cité par Sources :