A strongly diagonal power of algebraic order bounded disjointness preserving operators
Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 94-98.

Voir la notice de l'article provenant de la source American Mathematical Society

An order bounded disjointness preserving operator $T$ on an Archimedean vector lattice is algebraic if and only if the restriction of $T^{n!}$ to the vector sublattice generated by the range of $T^{m}$ is strongly diagonal, where $n$ is the degree of the minimal polynomial of $T$ and $m$ is its ‘valuation’.
DOI : 10.1090/S1079-6762-03-00116-1

Boulabiar, Karim 1 ; Buskes, Gerard 2 ; Sirotkin, Gleb 3

1 IPEST, Université de Carthage, BP 51, 2070-La Marsa, Tunisia
2 Department of Mathematics, University of Mississippi, MS 38677
3 Department of Mathematics, Northern Illinois University, DeKalb, IL 60115
@article{ERAAMS_2003_09_a11,
     author = {Boulabiar, Karim and Buskes, Gerard and Sirotkin, Gleb},
     title = {A strongly diagonal power of algebraic order bounded disjointness preserving operators},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {94--98},
     publisher = {mathdoc},
     volume = {09},
     year = {2003},
     doi = {10.1090/S1079-6762-03-00116-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00116-1/}
}
TY  - JOUR
AU  - Boulabiar, Karim
AU  - Buskes, Gerard
AU  - Sirotkin, Gleb
TI  - A strongly diagonal power of algebraic order bounded disjointness preserving operators
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2003
SP  - 94
EP  - 98
VL  - 09
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00116-1/
DO  - 10.1090/S1079-6762-03-00116-1
ID  - ERAAMS_2003_09_a11
ER  - 
%0 Journal Article
%A Boulabiar, Karim
%A Buskes, Gerard
%A Sirotkin, Gleb
%T A strongly diagonal power of algebraic order bounded disjointness preserving operators
%J Electronic research announcements of the American Mathematical Society
%D 2003
%P 94-98
%V 09
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00116-1/
%R 10.1090/S1079-6762-03-00116-1
%F ERAAMS_2003_09_a11
Boulabiar, Karim; Buskes, Gerard; Sirotkin, Gleb. A strongly diagonal power of algebraic order bounded disjointness preserving operators. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 94-98. doi : 10.1090/S1079-6762-03-00116-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00116-1/

[1] Abramovich, Y. A., Aliprantis, C. D. An invitation to operator theory 2002

[2] Abramovich, Y. A., Kitover, A. K. Inverses of disjointness preserving operators Mem. Amer. Math. Soc. 2000

[3] Aliprantis, Charalambos D., Burkinshaw, Owen Positive operators 1985

[4] Araujo, J., Beckenstein, E., Narici, L. Biseparating maps and homeomorphic real-compactifications J. Math. Anal. Appl. 1995 258 265

[5] Arendt, Wolfgang Spectral properties of Lamperti operators Indiana Univ. Math. J. 1983 199 215

[6] Arendt, W., Hart, D. R. The spectrum of quasi-invertible disjointness preserving operators J. Funct. Anal. 1986 149 167

[7] Grobler, J. J., Huijsmans, C. B. Disjointness preserving operators on complex Riesz spaces Positivity 1997 155 164

[8] Jarosz, Krzysztof Automatic continuity of separating linear isomorphisms Canad. Math. Bull. 1990 139 144

[9] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

[10] Luxemburg, W. A. J., De Pagter, B., Schep, A. R. Diagonals of the powers of an operator on a Banach lattice 1995 223 273

[11] Meyer, Mathieu Les homomorphismes d’espaces vectoriels réticulés complexes C. R. Acad. Sci. Paris Sér. I Math. 1981 793 796

[12] Meyer-Nieberg, Peter Banach lattices 1991

Cité par Sources :