Metric tensor estimates, geometric convergence, and inverse boundary problems
Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 69-79.

Voir la notice de l'article provenant de la source American Mathematical Society

Three themes are treated in the results announced here. The first is the regularity of a metric tensor, on a manifold with boundary, on which there are given Ricci curvature bounds, on the manifold and its boundary, and a Lipschitz bound on the mean curvature of the boundary. The second is the geometric convergence of a (sub)sequence of manifolds with boundary with such geometrical bounds and also an upper bound on the diameter and a lower bound on injectivity and boundary injectivity radius, making use of the first part. The third theme involves the uniqueness and conditional stability of an inverse problem proposed by Gel’fand, making essential use of the results of the first two parts.
DOI : 10.1090/S1079-6762-03-00113-6

Anderson, Michael 1 ; Katsuda, Atsushi 2 ; Kurylev, Yaroslav 3 ; Lassas, Matti 4 ; Taylor, Michael 5

1 Mathematics Department, State University of New York, Stony Brook, NY 11794
2 Mathematics Department, Okayama University, Tsushima-naka, Okayama, 700-8530, Japan
3 Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK
4 Rolf Nevanlinna Institute, University of Helsinki, FIN-00014, Finland
5 Mathematics Deptartment, University of North Carolina, Chapel Hill, NC 27599
@article{ERAAMS_2003_09_a8,
     author = {Anderson, Michael and Katsuda, Atsushi and Kurylev, Yaroslav and Lassas, Matti and Taylor, Michael},
     title = {Metric tensor estimates, geometric convergence, and inverse boundary problems},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {69--79},
     publisher = {mathdoc},
     volume = {09},
     year = {2003},
     doi = {10.1090/S1079-6762-03-00113-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00113-6/}
}
TY  - JOUR
AU  - Anderson, Michael
AU  - Katsuda, Atsushi
AU  - Kurylev, Yaroslav
AU  - Lassas, Matti
AU  - Taylor, Michael
TI  - Metric tensor estimates, geometric convergence, and inverse boundary problems
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2003
SP  - 69
EP  - 79
VL  - 09
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00113-6/
DO  - 10.1090/S1079-6762-03-00113-6
ID  - ERAAMS_2003_09_a8
ER  - 
%0 Journal Article
%A Anderson, Michael
%A Katsuda, Atsushi
%A Kurylev, Yaroslav
%A Lassas, Matti
%A Taylor, Michael
%T Metric tensor estimates, geometric convergence, and inverse boundary problems
%J Electronic research announcements of the American Mathematical Society
%D 2003
%P 69-79
%V 09
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00113-6/
%R 10.1090/S1079-6762-03-00113-6
%F ERAAMS_2003_09_a8
Anderson, Michael; Katsuda, Atsushi; Kurylev, Yaroslav; Lassas, Matti; Taylor, Michael. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 69-79. doi : 10.1090/S1079-6762-03-00113-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00113-6/

[1] Anderson, Michael T. Convergence and rigidity of manifolds under Ricci curvature bounds Invent. Math. 1990 429 445

[2] Belishev, M. I. An approach to multidimensional inverse problems for the wave equation Dokl. Akad. Nauk SSSR 1987 524 527

[3] Belishev, Michael I., Kurylev, Yaroslav V. To the reconstruction of a Riemannian manifold via its spectral data (BC-method) Comm. Partial Differential Equations 1992 767 804

[4] Cheeger, Jeff Finiteness theorems for Riemannian manifolds Amer. J. Math. 1970 61 74

[5] Cheeger, Jeff, Gromoll, Detlef The splitting theorem for manifolds of nonnegative Ricci curvature J. Differential Geometry 1971/72 119 128

[6] Deturck, Dennis M., Kazdan, Jerry L. Some regularity theorems in Riemannian geometry Ann. Sci. École Norm. Sup. (4) 1981 249 260

[7] Gelfand, I. Some aspects of functional analysis and algebra 1957 253 276

[8] Gromov, Misha Metric structures for Riemannian and non-Riemannian spaces 1999

[9] Hebey, E., Herzlich, M. Harmonic coordinates, harmonic radius and convergence of Riemannian manifolds Rend. Mat. Appl. (7) 1997

[10] Katchalov, Alexander, Kurylev, Yaroslav, Lassas, Matti Inverse boundary spectral problems 2001

[11] Kato, Tosio Perturbation theory for linear operators 1966

[12] Kurylev, Yaroslav V., Lassas, Matti The multidimensional Gel′fand inverse problem for non-self-adjoint operators Inverse Problems 1997 1495 1501

[13] Dunford, Nelson A mean ergodic theorem Duke Math. J. 1939 635 646

[14] Tataru, Daniel Unique continuation for solutions to PDE’s Comm. Partial Differential Equations 1995 855 884

[15] Taylor, Michael E. Tools for PDE 2000

Cité par Sources :