Automorphisms of categories of free algebras of varieties
Electronic research announcements of the American Mathematical Society, Tome 08 (2002), pp. 1-10.

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\Theta$ be an arbitrary variety of algebras and let $\Theta ^0$ be the category of all free finitely generated algebras from $\Theta$. We study automorphisms of such categories for special $\Theta$. The cases of the varieties of all groups, all semigroups, all modules over a noetherian ring, all associative and commutative algebras over a field are completely investigated. The cases of associative and Lie algebras are also considered. This topic relates to algebraic geometry in arbitrary variety of algebras $\Theta$.
DOI : 10.1090/S1079-6762-02-00099-9

Mashevitzky, G. 1 ; Plotkin, B. 2 ; Plotkin, E. 3

1 Department of Mathematics, Ben Gurion University of the Negev, 84105, Israel
2 Institute of Mathematics, The Hebrew University, Jerusalem, 91904, Israel
3 Department of Mathematics, Bar Ilan University, Ramat Gan, 52900, Israel
@article{ERAAMS_2002_08_a0,
     author = {Mashevitzky, G. and Plotkin, B. and Plotkin, E.},
     title = {Automorphisms of categories of free algebras of varieties},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {08},
     year = {2002},
     doi = {10.1090/S1079-6762-02-00099-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00099-9/}
}
TY  - JOUR
AU  - Mashevitzky, G.
AU  - Plotkin, B.
AU  - Plotkin, E.
TI  - Automorphisms of categories of free algebras of varieties
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2002
SP  - 1
EP  - 10
VL  - 08
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00099-9/
DO  - 10.1090/S1079-6762-02-00099-9
ID  - ERAAMS_2002_08_a0
ER  - 
%0 Journal Article
%A Mashevitzky, G.
%A Plotkin, B.
%A Plotkin, E.
%T Automorphisms of categories of free algebras of varieties
%J Electronic research announcements of the American Mathematical Society
%D 2002
%P 1-10
%V 08
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00099-9/
%R 10.1090/S1079-6762-02-00099-9
%F ERAAMS_2002_08_a0
Mashevitzky, G.; Plotkin, B.; Plotkin, E. Automorphisms of categories of free algebras of varieties. Electronic research announcements of the American Mathematical Society, Tome 08 (2002), pp. 1-10. doi : 10.1090/S1079-6762-02-00099-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00099-9/

[1] Baumslag, Gilbert, Myasnikov, Alexei, Remeslennikov, Vladimir Algebraic geometry over groups. I. Algebraic sets and ideal theory J. Algebra 1999 16 79

[2] Baumslag, Gilbert, Myasnikov, Alexei, Remeslennikov, Vladimir Algebraic geometry over groups 2000 35 50

[3] Berzins, A., Plotkin, B., Plotkin, E. Algebraic geometry in varieties of algebras with the given algebra of constants J. Math. Sci. (New York) 2000 4039 4070

[4] Czerniakiewicz, Anastasia J. Automorphisms of a free associative algebra of rank 2. I Trans. Amer. Math. Soc. 1971 393 401

[5] Cohn, P. M. Free rings and their relations 1985

[6] Dyer, Joan L., Formanek, Edward The automorphism group of a free group is complete J. London Math. Soc. (2) 1975 181 190

[7] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

[8] Epstein, Leo F. A function related to the series for 𝑒^{𝑒^{𝑥}} J. Math. Phys. Mass. Inst. Tech. 1939 153 173

[9] Makar-Limanov, L. G. The automorphisms of the free algebra with two generators Funkcional. Anal. i Priložen. 1970 107 108

[10] Myasnikov, Alexei, Remeslennikov, Vladimir Algebraic geometry over groups. II. Logical foundations J. Algebra 2000 225 276

[11] Nagata, Masayoshi On automorphism group of 𝑘[𝑥,𝑦] 1972

[12] Plotkin, B. Varieties of algebras and algebraic varieties Israel J. Math. 1996 511 522

[13] Plotkin, B. Varieties of algebras and algebraic varieties. Categories of algebraic varieties Siberian Adv. Math. 1997 64 97

[14] Plotkin, B. I. Some concepts of algebraic geometry in universal algebra Algebra i Analiz 1997 224 248

[15] Schein, Boris M., Teclezghi, Beimnet Endomorphisms of finite full transformation semigroups Proc. Amer. Math. Soc. 1998 2579 2587

Cité par Sources :