Some nonexistence results for higher-order evolution inequalities in cone-like domains
Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 87-93.

Voir la notice de l'article provenant de la source American Mathematical Society

Nonexistence of global (positive) solutions of semilinear higher-order evolution inequalities \begin{equation*} \frac {\partial ^k u}{\partial t^k}-\Delta u^m\ge |u|^q,\quad \frac {\partial ^k u}{\partial t^k}-\Delta u\ge |x|^\sigma u^q,\quad \frac {\partial ^ku}{\partial t^k}-\operatorname{div} (|x|^\alpha Du)\ge u^q \end{equation*} with $k=1,2,\dots$, in cone-like domains is studied. The critical exponents $q^*$ are found and the nonexistence results are proved for $1$. Remark that the corresponding result for $k=1$ (parabolic problem) is sharp.
DOI : 10.1090/S1079-6762-01-00098-1

Laptev, Gennady 1

1 Department of Function Theory, Steklov Mathematical Institute, Gubkina Street 8, Moscow, Russia
@article{ERAAMS_2001_07_a11,
     author = {Laptev, Gennady},
     title = {Some nonexistence results for higher-order evolution inequalities in cone-like domains},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {87--93},
     publisher = {mathdoc},
     volume = {07},
     year = {2001},
     doi = {10.1090/S1079-6762-01-00098-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00098-1/}
}
TY  - JOUR
AU  - Laptev, Gennady
TI  - Some nonexistence results for higher-order evolution inequalities in cone-like domains
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2001
SP  - 87
EP  - 93
VL  - 07
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00098-1/
DO  - 10.1090/S1079-6762-01-00098-1
ID  - ERAAMS_2001_07_a11
ER  - 
%0 Journal Article
%A Laptev, Gennady
%T Some nonexistence results for higher-order evolution inequalities in cone-like domains
%J Electronic research announcements of the American Mathematical Society
%D 2001
%P 87-93
%V 07
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00098-1/
%R 10.1090/S1079-6762-01-00098-1
%F ERAAMS_2001_07_a11
Laptev, Gennady. Some nonexistence results for higher-order evolution inequalities in cone-like domains. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 87-93. doi : 10.1090/S1079-6762-01-00098-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00098-1/

[1] Deng, Keng, Levine, Howard A. The role of critical exponents in blow-up theorems: the sequel J. Math. Anal. Appl. 2000 85 126

[2] Galaktionov, Victor A., Levine, Howard A. A general approach to critical Fujita exponents in nonlinear parabolic problems Nonlinear Anal. 1998 1005 1027

[3] John, Fritz Nonlinear wave equations, formation of singularities 1990

[4] Kondrat′Ev, V. A. Boundary value problems for elliptic equations in domains with conical or angular points Trudy Moskov. Mat. Obšč. 1967 209 292

[5] Kurta, V. V. On the absence of positive solutions to semilinear elliptic equations Tr. Mat. Inst. Steklova 1999 162 169

[6] Levine, Howard A. The role of critical exponents in blowup theorems SIAM Rev. 1990 262 288

[7] Mitidieri, È., Pokhozhaev, S. I. Absence of positive solutions for quasilinear elliptic problems in 𝑅^{𝑁} Tr. Mat. Inst. Steklova 1999 192 222

[8] Pohozaev, Stanislav I., Tesei, Alberto Blow-up of nonnegative solutions to quasilinear parabolic inequalities Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2000 99 109

[9] Sundaram, S. Minakshi On non-linear partial differential equations of the hyperbolic type Proc. Indian Acad. Sci., Sect. A. 1939 495 503

[10] Zhang, Qi S. Blow-up results for nonlinear parabolic equations on manifolds Duke Math. J. 1999 515 539

[11] Zhang, Qi S. Blow up and global existence of solutions to an inhomogeneous parabolic system J. Differential Equations 1998 155 183

Cité par Sources :