Generators and relations for Schur algebras
Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 54-62.

Voir la notice de l'article provenant de la source American Mathematical Society

We obtain a presentation of Schur algebras (and $q$-Schur algebras) by generators and relations, one which is compatible with the usual presentation of the enveloping algebra (quantized enveloping algebra) corresponding to the Lie algebra $\mathfrak {gl}_n$ of $n\times n$ matrices. We also find several new bases of Schur algebras.
DOI : 10.1090/S1079-6762-01-00094-4

Doty, Stephen 1 ; Giaquinto, Anthony 1

1 Department of Mathematics, Loyola University, Chicago, IL 60626
@article{ERAAMS_2001_07_a7,
     author = {Doty, Stephen and Giaquinto, Anthony},
     title = {Generators and relations for {Schur} algebras},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {54--62},
     publisher = {mathdoc},
     volume = {07},
     year = {2001},
     doi = {10.1090/S1079-6762-01-00094-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00094-4/}
}
TY  - JOUR
AU  - Doty, Stephen
AU  - Giaquinto, Anthony
TI  - Generators and relations for Schur algebras
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2001
SP  - 54
EP  - 62
VL  - 07
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00094-4/
DO  - 10.1090/S1079-6762-01-00094-4
ID  - ERAAMS_2001_07_a7
ER  - 
%0 Journal Article
%A Doty, Stephen
%A Giaquinto, Anthony
%T Generators and relations for Schur algebras
%J Electronic research announcements of the American Mathematical Society
%D 2001
%P 54-62
%V 07
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00094-4/
%R 10.1090/S1079-6762-01-00094-4
%F ERAAMS_2001_07_a7
Doty, Stephen; Giaquinto, Anthony. Generators and relations for Schur algebras. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 54-62. doi : 10.1090/S1079-6762-01-00094-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00094-4/

[1] Beilinson, A. A., Lusztig, G., Macpherson, R. A geometric setting for the quantum deformation of 𝐺𝐿_{𝑛} Duke Math. J. 1990 655 677

[2] Du, Jie A note on quantized Weyl reciprocity at roots of unity Algebra Colloq. 1995 363 372

[3] Green, James A. Polynomial representations of 𝐺𝐿_{𝑛} 1980

[4] Green, R. M. 𝑞-Schur algebras as quotients of quantized enveloping algebras J. Algebra 1996 660 687

[5] Bǎdescu, Radu On a problem of Goursat Gaz. Mat. 1939 571 577

[6] Lusztig, George Introduction to quantum groups 1993

[7] Wenzl, Hans Hecke algebras of type 𝐴_{𝑛} and subfactors Invent. Math. 1988 349 383

Cité par Sources :